Answer: in the smaller/ thinner pieces.
Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Answer:
95.9°
Explanation:
The diagram illustrating the action of the two forces on the object is given in the attached photo.
Using sine rule a/SineA = b/SineB, we can obtain the value of B° as shown in the attached photo as follow:
a/SineA = b/SineB,
83/Sine52 = 56/SineB
Cross multiply to express in linear form
83 x SineB = 56 x Sine52
Divide both side by 83
SineB = (56 x Sine52)/83
SineB = 0.5317
B = Sine^-1(0.5317)
B = 32.1°
Now, we can obtain the angle θ, between the two forces as shown in the attached photo as follow:
52° + B° + θ = 180° ( sum of angles in a triangle)
52° + 32.1° + θ = 180°
Collect like terms
θ = 180° - 52° - 32.1°
θ = 95.9°
Therefore, the angle between the two forces is 95.9°
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.