Answer:
Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:
So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by
where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using and solving for , we find the maximum wavelength of the radiation that will eject electrons from the metal:
And since
1 angstrom =
The wavelength in angstroms is
Work = (force) x (distance) =
(200 N) x (3.5 m) = <em>700 joules</em>
The four distinct charges' combined potentials make up the potential in the square's center. The amount of the charge and the distance from the charge both affect the potential caused by a point charge.
Therefore, the center's total potential is V=4V1=ks4 q.
<h3>What is a charge?</h3>
Due to the physical characteristic of electric charge, charged material experiences a force when it is exposed to an electromagnetic field. An object that has no net charge is said to be neutral. Classical electrodynamics is the name given to an earlier theory of the interactions of charged particles.
You can have positive or negative electric charges (commonly carried by protons and electrons respectively). opposing charges attract one another whereas similar charges repel one another.
To learn more about charge from the given link:
brainly.com/question/9194793
#SPJ4
Answer:
The wall is 680 meter away from the person.
Explanation:
Given data
Speed of sound = 340
Given that Persons said hello toward the opposite side she has an echo hello 4 seconds later means it takes 2 seconds for the sound to reach the wall & again 2 seconds to reach the persons ear.
Therefore the distance between the person & wall is
D = speed × Time
D = 340 × 2
D = 680 meter
Therefore the wall is 680 meter away from the person.