Answer:
Explanation:
We have to start with the <u>reaction</u>:

We have the same amount of atoms on both sides, so, we can continue. The next step is to find the <u>number of moles</u> that we have in the 110.0 g of carbon dioxide, to this, we have to know the <u>atomic mass of each atom</u>:
C: 12 g/mol
O: 16 g/mol
Mg: 23.3 g/mol
If we take into account the number of atoms in the formula, we can calculate the <u>molar mass</u> of carbon dioxide:
In other words:
. With this in mind, we can calculate the moles:

Now, the <u>molar ratio</u> between carbon dioxide and magnesium carbonate is 1:1, so:

With the molar mass of
(
. With this in mind, we can calculate the <u>grams of magnesium carbonate</u>:
I hope it helps!
The answer is <span>D.when the aim is to show electron distributions in shells. This is because there are some instances when elements don't possess a regular or normal electron configuration. There are those who have special electron configurations wherein a lower subshell isn't completely filled before occupying a higher subshell. It is best to visualize such cases using the orbital notation.</span>
Most transition metal form more than one cation but aluminum forms the Al3+ cation only.
Average speed in km/h:
S = D/T
T = 10/60 hrs
= 0.1667
S = 10 / 0.1667
= 59.988 km/h
Answer: kg= 0.37
Explanation:
Use the molality formula.
M= m/kg