A=mgh
m=300g=0.3kg
g=9,81 m/s^2
h=10m
A=29.43J
Answer:
c.
Explanation:
We are given that
Acceleration due to gravity on the moon=
Acceleration due to gravity on the earth=

Net force due to am on an object on moon=
There is no friction and no drag force and there is no gravity involved
Then, the force acting on an object on earth=
(given)


Hence, option c is true.
You should note that the melting point of mercury is -38.83°C, while the boiling point is at 356.7°C. Then, that means that there is no latent heat involved here. We only compute for the sensible heat.
ΔH = mCpΔT
The Cp of mercury is 0.14 J/g·°C
Thus,
ΔH = (411 g)(0.14 J/g·°C)(88 - 12°C)
<em>ΔH = 4,373.04 J</em>
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
Answer:
The correct option is;
Still constant
Explanation:
The relative refractive index ₁n₂ between the two medium can be as follows;

Therefore, given that the speed of light in medium 1 is constant and the speed of light on medium 2 is also constant, the relative refractive index ₁n₂ = c₁/c₂ is always constant.