The answer is 60.3% magnesium, 39.7% oxygen.
Solution:
The chemical equation for the reaction is 2 Mg + O2 → 2 MgO.
Since magnesium reacts completely with oxygen, it is the limiting reactant in the reaction. Hence, we can use the number of moles of magnesium to get the mass of MgO produced:
moles of magnesium = 14.7g / 24.305g mol-1
= 0.6048 mol
mass of MgO = 0.6048mol Mg(2 mol MgO/2mol Mg)(40.3044g MgO/1 mol MgO)
= 24.376g MgO
We can now solve for the percentage of magnesium:
% Mg = (14.7g Mg / 24.376g MgO)*100% = 60.3%
We also use the number of moles of magnesium to get the mass of oxygen consumed in the reaction:
mass of O2 = 0.6048 mol Mg (1mol O2 / 2mol Mg) (31.998g / 1mol O2)
= 9.676g
The percentage of oxygen is therefore
% O2 = (9.676g O2 / 24.376g MgO)*100%
= 39.7%
Notice that we can just subtract the magnesium's percentage from 100% to get
% O2 = 100% - 60.3% = 39.7%
Answer:
Hypothesis
Explanation:
The following steps are applicable when we wish to prove a specific fact:
- a hypothesis is made; this is a statement that we provide after some observations and we wish to either prove or deny it;
- multiple experiments are carried out in order to gather significantly substantial amount of data that can be then further analyzed and any tendencies can be noticed;
- based on the data gathered, conclusions are made: we either prove or deny the hypothesis. If hypothesis is proved, it may become a theory over long time.
In the context of this problem, we're at the first step where we make a hypothesis.
His measurements are precise since his pH values are close to each other in a way that it was repeated in all measurements. On the contrary to accuracy, it is the closeness to the actual pH value he should have achieved. Therefore, Jose's results are precise but not accurate since his value is not close to the actual value of pH 4.
Answer:

Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
Given: Kc = 0.50
Temperature = ![400^oC=[400+273]K=673K](https://tex.z-dn.net/?f=400%5EoC%3D%5B400%2B273%5DK%3D673K)
R = 0.082057 L atm.mol⁻¹K⁻¹
Δn = (2)-(3+1) = -2
Thus, Kp is:

Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)