The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
Answer:
Option D = 0.2 Kj
Explanation:
Given data:
Mass of diethyl ether = 1.0 g
Hvap = 15.7 Kj / mol
Heat absorbed = ?
Solution:
Q = mass × Hvap / molar mass
Q = 1.0 g × 15.7 Kj / mol / 74.12 g/mol
Q = 15.7 Kj / 74.12
Q = 0.212 KJ
Answer:
endothermic
Explanation:
the negative sign of the heat indicates that heat is being drawn into the system, thus endothermic
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go