1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
13

A chemist titrates 190.0 mL of a 0.8125 M ammonia (NH) solution with 0.3733 M HCl solution at 25 °C. Calculate the pH at equival

ence. The pK, of
ammonia is 4.75.
Round your answer to 2 decimal places.
Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HCl solution added.
pH ?
Chemistry
1 answer:
stealth61 [152]3 years ago
5 0

Answer:

Approximately 4.92.

Explanation:

Initial volume of the solution: V = 190.0\; \rm mL = 0.1900\; \rm L.

Initial quantity of \rm NH_3:

\begin{aligned} n({\rm NH_3}) &= c({\rm NH_3}) \cdot V({\rm NH_3}) \\ &= 0.3733\; \rm mol \cdot L^{-1} \times 0.1900\; \rm L \\ &\approx 0.154375\; \rm mol\end{aligned}.

Ammonia \rm NH_3 reacts with hydrochloric \rm HCl acid at a one-to-one ratio:

\rm NH_3 + HCl \to NH_4 Cl.

Hence, approximately n({\rm HCl}) = 0.154375\; \rm mol of \rm HCl\! molecules would be required to exactly react with the \rm NH_3\! in the original solution and hence reach the equivalence point of this titration.

Calculate the volume of that 0.3733\; \rm mol \cdot L^{-1} \rm HCl solution required for reaching the equivalence point of this titration:

\begin{aligned}V({\rm HCl}) &= \frac{n({\rm HCl})}{c({\rm HCl})} \\ &\approx \frac{0.154375\; \rm mol}{0.3733\; \rm mol \cdot L^{-1}} \approx 0.413541\; \rm L\end{aligned}.

Hence, by the assumption stated in the question, the volume of the solution at the equivalence point would be approximately 0.413541\; \rm L + 0.1900\; \rm L \approx 0.6035\; \rm L.

If no hydrolysis took place, 0.154375\; \rm mol of \rm NH_4 Cl would be produced. Because \rm NH_4 Cl\! is a soluble salt, the solution would contain 0.154375\; \rm mol\! of \rm {NH_4}^{+} ions. The concentration of \rm {NH_4}^{+}\! would be approximately:

\begin{aligned}c({\rm {NH_4}^{+}}) &= \frac{n({\rm {NH_4}^{+}})}{V({\rm {NH_4}^{+}})}\\ &\approx \frac{0.154375\; \rm mol}{0.6035\; \rm L} \approx 0.255782\; \rm mol \cdot L^{-1}\end{aligned}.

However, because \rm NH_3 \cdot H_2O is a weak base, its conjugate \rm {NH_4}^{+} would be a weak base.

\begin{aligned}pK_{\rm a}({{\rm NH_4}}^{+}) &= pK_{\rm w} - pK_{\rm b}({\rm NH_3})\\ &\approx 13.99 - 4.75 = 9.25\end{aligned}.

Hence, the following reversible reaction would be take place in the solution at the equivalence point:

\rm {NH_4}^{+} \rightleftharpoons NH_3 + H^{+}.

Let x\; \rm mol \cdot L^{-1} be the increase in the concentration of \rm H^{+} in this solution because of this reversible reaction. (Notice that x \ge 0.) Construct the following \text{RICE} table:

\begin{array}{c|ccccc} \textbf{R}& \rm {\rm NH_4}^{+} & \rightleftharpoons & {\rm NH_3}& + & {\rm H}^{+}\\ \textbf{I} & 0.255782 \; \rm M \\ \textbf{C} & -x \;\rm M & & + x\;\rm M & & + x\; \rm M \\ \textbf{E} & (0.255782 - x)\; \rm M & & x\; \rm M & & x\; \rm M\end{array}.

Thus, at equilibrium:

  • Concentration of the weak acid: [{\rm {NH_4}^{+}}] \approx (0.255782 - x) \; \rm M.
  • Concentration of the conjugate of the weak acid: [{\rm NH_3}] = x\; \rm M.
  • Concentration of \rm H^{+}: [{\rm {H}^{+}}] \approx x\; \rm M.

\displaystyle \frac{[{\rm NH_3}] \cdot [{\rm H^{+}}]}{[{ \rm {NH_4}^{+}}]} = 10^{pK_\text{a}({\rm {NH_4}^{+}})}.

\displaystyle \frac{x^2}{0.255782 - x} \approx 10^{-9.25}

Solve for x. (Notice that the value of x\! is likely to be much smaller than 0.255782. Hence, the denominator on the left-hand side (0.255782 - x) \approx 0.255782.)

x \approx 1.19929 \times 10^{-5}.

Hence, the concentration of \rm H^{+} at the equivalence point of this titration would be approximately 1.19929 \times 10^{-5}\; \rm M.

Hence, the pH at the equivalence point of this titration would be:

\begin{aligned}pH &= -\log_{10}[{\rm {H}^{+}}] \\ &\approx -\log_{10} \left(1.19929 \times 10^{-5}\right) \approx 4.92\end{aligned}.

You might be interested in
How many milliliters of 0.200 M NH4OH are needed to react with 12.0 mL of 0.550 M FeCl3?
trapecia [35]

Answer:

9.9 ml of 0.200M NH₄OH(aq)

Explanation:

3NH₄OH(Iaq) + FeCl₃(aq) => NH₄Cl(aq) + Fe(OH)₃(s)

?ml of 0.200M NH₄OH(aq) reacts completely with  12ml of 0.550M FeCl₃(aq)

1 x Molarity NH₄OH x Volume Am-OH Solution(L) = 2 x Molarity FeCl₃ x Volume FeCl₃ Solution

1(0.200M)(Vol Am-OH Soln) = 3(0.550M)(0.012L)

=> Vol Am-OH Soln = 3(0.550M)(0.012L)/1(0.200M) = 0.0099 Liter = 9.9 milliliters  

5 0
3 years ago
The pH of a 0.150 molar solution of a weak acid is 4.10. What is the pKa of the acid?
Kamila [148]
Answer: 4.21×10⁻⁸

Explanation:


1) Assume a general equation for the ionization of the weak acid:

Let HA be the weak acid, then the ionization equation is:

HA ⇄ H⁺ + A⁻

2) Then, the expression for the ionization constant is:

Ka = [H⁺][A⁻] / [HA]

There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)


3) So, you need to determine [H⁺] which you do from the pH.

By definition, pH = - log [H⁺]

And from the data given pH = 4.1


⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵

4) Now you have all the values to calculate the expression for Ka:

ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸
3 0
3 years ago
Read 2 more answers
Addition of an excess of lead (II) nitrate to a 50.0mL solution of magnesium chloride caused a formation of 7.35g of lead (II) c
KiRa [710]

Answer:

[Cl⁻] = 0.016M

Explanation:

First of all, we determine the reaction:

Pb(NO₃)₂ (aq) + MgCl₂ (aq) → PbCl₂ (s) ↓  +  Mg(NO₃)₂(aq)

This is a solubility equilibrium, where you have a precipitate formed, lead(II) chloride. This salt can be dissociated as:

           PbCl₂(s)  ⇄  Pb²⁺ (aq)  +  2Cl⁻ (aq)     Kps

Initial        x

React       s

Eq          x - s              s                  2s

As this is an equilibrium, the Kps works as the constant (Solubility product):

Kps = s . (2s)²

Kps = 4s³ = 1.7ₓ10⁻⁵

4s³ = 1.7ₓ10⁻⁵

s =  ∛(1.7ₓ10⁻⁵ . 1/4)

s = 0.016 M

3 0
3 years ago
What is the equation you use to determine the momentum of an object
klemol [59]

The terms of a equation, the momentum of an object is equal to the mass of the object times the velocity of the object. where m is the mass and v is the velocity

5 0
3 years ago
A sample of gas has a volume of 12.0 L and a pressure of 2.00 ATM. If the pressure of gas is increased to6.00 ATM, what is the n
earnstyle [38]

Answer:

4L

Explanation:

8 0
3 years ago
Other questions:
  • Example when materials are prepared as fluids so they can be moved more easily
    6·2 answers
  • Enriched weapons-grade uranium consists of 80% uranium-235 (235.044 amu) and 20% uranium-238 (238.051 amu). what is the average
    5·1 answer
  • A 12.8 g piece of aluminum (which has a molar heat capacity of 24.03 j/°c·mol) is heated to 82.4°c and dropped into a calorimete
    13·1 answer
  • 2.
    11·2 answers
  • Calculate, by explicit summation, the vibrational partition functionand the vibrational contribution to the molar internal energ
    15·1 answer
  • What is the house off Neutron​
    15·1 answer
  • What is hydrolysis?​
    5·2 answers
  • Initially a NaOH solution was standardized by titration with a sample of potassium hydrogenphthalate, KHC8H4O4, a monoprotic aci
    15·1 answer
  • Cubr2 molecular or atomic
    13·1 answer
  • What is the element name for mg2SiO4
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!