Answer:
- <u>Freezing point: - 1.83ºC</u>
- <u>Boiling point: 100.50ºC</u>
Explanation:
The <em>freezing point</em> and<em> boiling point</em> of solvents, when a solute is added, will change accordingly to the concentration of the solute particles.
The freezing point will decrease and the boiling point will increase. These are two colligative properties.
<u></u>
<u>Find attached the file with the whole answer, as the site is not uploading the answer in here.</u>
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹
Measure the brightness of a star through two filters and compare the ratio of red to blue light.
Answer:
Here's what I get
Explanation:
At the introductory level of chemistry, I can think of only two situations when you use Greek prefixes.
They indicate the number of atoms or groups in a molecule when you are naming a compound.
1. Binary covalent compounds
For example, P₂S₅ is diphosphorus pentasulfide.
2. Hydrates
For example, Na₂SO₄·10H₂O is sodium sulfate decahydrate.
Answer:
False
Explanation:
It is coal-fired power plants that produce mercury, air pollution, and carbon dioxide.
However, nuclear energy produces radioactive waste that must be stored for many years before it can be safely disposed.