Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.
Answer:
10.945 x 10^-4
Explanation:
Balanced equation:
Mn(OH)2 + 2 HCl --> MnCl2 + H2O
it takes 2 moles HCL for each mole Mn(OH)2
Next find the molarity of the Mn(OH)2 solution
= (1 mole Mn(OH)2 / 2 mole HCl) X (0.0020 mole HCl / 1000ml) X (4.86 ml)
= 4.86 x 10^-3 mole
this is now dissolved in (70 + 4.86) = 74.86 ml or 0.07486 L
thus [Mn(OH)2] = 4.86 x 10^-3 mole / 0.07486 L = 0.064921 M
Ksp = [Mn2+][OH-]^2 = 4x^3 = 4(0.064921)^3 = 10.945 x 10^-4
Reactants would be the missing word in the sentence because they make up the products in a chemical reaction