1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
2 years ago
15

The "steam" above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot

coffee. What is the final temperature of 250 g of hot coffee initially at 90.0ºC if 2.00 g evaporates from it? The coffee is in a Styrofoam cup, so other methods of heat transfer can be neglected. (answer in ºC)
Physics
1 answer:
KiRa [710]2 years ago
5 0

Answer:

T_{f} = 85.7 ° C

Explanation:

For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state

      Q₁ = m L

Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water

     Q₁ = 2.00 10⁻³ 2.26 10⁶

     Q1 = 4.52 10³ J

Now the heat of coffee in the cup, which does not change state is

     Q coffee = M c_{e} ( T_{f} -T_{i})

Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat

    Qc = - Q₁

    M ce (T_{f} -T_{i}) = - Q₁

The coffee dough left in the cup after evaporation is

    M = 250 -2 = 248 g = 0.248 kg

   T_{f} -Ti = -Q1 / M c_{e}

   T_{f} = Ti - Q1 / M c_{e}

Since coffee is essentially water, let's use the specific heat of water,

    c_{e}= 4186 J / kg ºC

Let's calculate

     T_{f} = 90.0 - 4.52 103 / (0.248 4.186 103)

     T_{f} = 90- 4.35

     T_{f} = 85.65 ° C

     T_{f} = 85.7 ° C

You might be interested in
A flare is launched from a life raft with an initial velocity of 192 ft/sec. How many seconds will it take for the flare to retu
DIA [1.3K]

We use the formula,

h= ut- 16 t^2

Here, h is the  variable  represents the height of the flare  in feet when it returns to the sea so, h = 0 and u is the initial velocity of the flare, in feet per second and its value of 192 ft/sec.

Substituting these values in above equation, we get

0 = 192 t - 16 t^2  \\\\ 16 t( 12 - t ) =0 \\\\ t = 12 s.

Here, t= 0 neglect because it is  the time when the flare is launched.

Thus, flare return to the sea in 12 s.

8 0
3 years ago
3. How is using a model to study cells helpful?
4vir4ik [10]

Answer:

Yes, it is very helpful.

Explanation:

It's helpful since in a cell, plant or animal, there are a lot of different things. It's hard to memorize everything and know what they look like. Using a model can help you memorize everything better and even understand it better. If someone asked me where or what something was in a cell I think I would be able to recognize it better.

I hope this helps!

6 0
3 years ago
A student weighing 120 lbs climbs a 12 ft flight of stairs in 9 seconds. how much power did the student create?
Alex Ar [27]
Power can be calculate through the equation,
                        Power = Force x velocity

It should be noted that velocity is calculated by dividing displacement by time. Thus, from the given in this item we can calculate for the power. 
                       Power = (120 lb) x (12 ft/9 s)
                         <em> </em><span><em>Power   = 160 lb.ft/s</em></span>
7 0
3 years ago
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
2 years ago
Warm water is generally less dense than cold water. The mass of a ship increases as it is loaded with cargo. If a ship will be s
KengaRu [80]
If a ship will be sailing through warm and cold water, people think about making it less dense than the warmest water as they load the ship with cargo. I think you forgot to give the options along with the question. I hope that this is the answer that has actually come to your desired help.
6 0
2 years ago
Read 2 more answers
Other questions:
  • Phytoplankton would most likely be found _______.
    11·2 answers
  • Reeti has a mass of 51.0 kg. The Gravitron, a ride that spins so fast that the floor can be removed without the riders falling,
    13·1 answer
  • What is true about coal as an energy source
    8·1 answer
  • An object of mass 5 kilograms is acted upon by the forces F and F2 as shown.
    5·1 answer
  • Would you expect to weigh more on an ocean beach or on top of a mountain? Explain.
    5·1 answer
  • Kelly Clarkson is running between the Patronas towers in Kuala Lumpur on a tightrope at a speed of 15 m/s. Kelly currently weigh
    9·2 answers
  • What voltage is required to move 6A through 5Ω?
    14·1 answer
  • A ball of 0.5kg slows down from 5m/s to 3m/s. Calculate the work done inthe process.
    6·1 answer
  • What factors do NOT affect friction between two objects? Explain how you know this.
    12·1 answer
  • Did you diagram all the faults and folds correctly? Which fault and/or fold did you find most difficult to diagram?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!