Answer:
Distance, d = 99990 meters
Explanation:
It is given that,
Speed of the train, v = 200 km/h = 55.55 m/s
Time taken, t = 1800 s
Let d is the distance covered by the train. We know that the speed of an object is given by total distance covered divided by total time taken. Mathematically, it is given by :



d = 99990 m
So, the distance covered by the train is 99990 meters. Hence, this is the required solution.
<span>Magnets are created due to the uniform motion of "Electrons"
Hope this helps!</span>
The direction of the magnetic force on the wire is west.
The magnetic force acting on the moving protons acts northward in the horizontal plane. If the thumb is up (current flows vertically up), the wrapped finger will be counterclockwise.
Therefore, the direction of the magnetic field is counterclockwise. Here, the magnetic field is pointing upwards (vertical magnetic field) and the electrons are moving east. Applying Fleming's left-hand rule here, we can see that the direction of force is along the south direction.
As the change in magnetic flux increases upwards, Lenz's law indicates that the induced magnetic field of the induced current must resist and the inside of the loop must be directed downwards. Using the right-hand rule, we can see that a clockwise current is induced.
Learn more about the magnetic fields here: brainly.com/question/7802337
#SPJ4
F = mass x acceleration
We have mass = 200kg
and acceleration = 3 m/s^2 so...
F = (200)(3)
F = 600 N