Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
a) First, to get ΔG°rxn we have to use this formula when:
ΔG° = - RT ㏑ K
when ΔG° is Gibbs free energy
and R is the constant = 8.314 J/mol K
and T is the temperature in Kelvin = 25 °C+ 273 = 298 K
and when K = 4.4 x 10^-2
so, by substitution:
ΔG°= - 8.314 * 298 *㏑(4.4 x 10^-2)
= -7739 J = -7.7 KJ
b) then, to get E° cell for a redox reaction we have to use this formula:
ΔE° Cell = (RT / nF) ㏑K
when R is a constant = 8.314 J/molK
and T is the temperature in Kelvin = 25°C + 273 = 298 K
and n = no.of moles of e- from the balanced redox reaction= 3
and F is Faraday constant = 96485 C/mol
and K = 4.4 x 10^-2
so, by substitution:
∴ ΔE° cell = (8.314 * 298 / 3* 96485) *㏑(4.4 x 10^-2)
= - 2.7 x 10^-2 V
The molar mass of Li->7g/mol
If 1mol of Li is 7g/mol
1.50mol of Li would be 10.5g/mol
Answer:
The study of movement, distribution and quality of water.
Explanation:
They measure the properties of bodied of water, such as the volume of and stream flow.