<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>
Milk, apples, and beans don't have much carbohydrate. So if you
cut down on those, you don't really cut down much on carbohydrates.
If Rachel needs to reduce her intake of carbohydrates, she should
cut down on bread. (Also cake, sugar, corn, pasta, and potatoes.)
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:

- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m