Answer:
The box 1 moves faster.
Explanation:
lets
Mass =m kg
Initial velocity = u m/s
Initial velocity of box = 0 m/s
Let stake mass of block = m
When ball bounces back:
The final speed of the box = v
Final speed of ball = - u
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = m ( - u) + m v
mu + mu = m v
v= 2 u
When ball get stuck :
The final speed of ball and box = v
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = (m+m) v
v= u /2
So the box 1 moves faster.
Answer:
a condition in which is real or imagined in fear are difficult to control
Answer:
So electric field between the plates will be equal to 
Explanation:
We have given potential difference between accelerating plates = 24 KV = 24000 volt
Distance between the plates d = 1.5 cm = 0.015 m
We know that potential difference is given by V = Ed, here E is electric field and d is distance between plates
So 
E = 1600000 N/C = 
So electric field between plates will be equal to 
Answer:
95.78125%
18000 m/s
22233.33 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

The velocity of the rocket at the end of the first 15 minutes is 18000 m/s which is the maximum speed of the rocket in the complete journey.
Distance traveled while speeding up

Distance traveled while slowing down

Distance traveled during constant speed

Fraction

Fraction of the total distance is traveled at constant speed is 95.78125%
Time taken at constant speed

Total time taken is 