Using the following given values:
Object 1:
Mass = M1 = 2 kg
Velocity before collision = Vb1 = 20 m/s
Velocity after collision = Va1 = -5 m/s
Object 2:
Mass = M2 = 3 kg
Velocity before collision = Vb2 = -10 m/s
Velocity after collision = Va2 = ? m/s<span>
</span>
Obtaining Va2 via law of conservation of momentum:
total momentum after collision = total momentum before collision
M1 * Va1 + M2 * Va2 = M1 * Vb1 + M2 * Vb2
2*-5 + 3Va2 = 2*20 + 3*-10
Va2 = 6.67
Total kinetic energy before collision:
KE1 = (1/2)*M1*Vb1^2 + (1/2)*M2*Vb2^2
<span>KE1 = (1/2)*2*(20)^2 + (1/2)*3*(-10)^2
KE1 = 550 J
</span>Total kinetic energy after collision:
KE2 = (1/2)*M1*Va1^2 + (1/2)*M2*Va2^2
<span>KE2 = (1/2)*2*(-5)^2 + (1/2)*3*(6.67)^2
KE2 = 91.73 J
</span>
Total kinetic energy lost:
Energy lost = KE1 - KE2 = 550 - 91.73 = 458.27 J
According to kinetic molecular theory temperature is a measure of kinetic energy.There is absolute minimum temperature which occurs when something completely stop moving whereby temperature cannot become lower than this point. The absolute zero which has been extrapolated to exist at about -273 celsius while in kelvin scale is set such that absolute zero is 0 k thus kelvin is better inorder to avoid negative number when calculating.
Answer:
Electrostatics is a branch of physics that studies electric charges at rest. Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, or electron, was thus the source of the word 'electricity'.
Answer:
2.47 m/s
Explanation:
Momentum = Mass X Velocity
If they were locked together, it means its a perfectly inelastic collision. Therefore,
Total momentum before = Total momentum after
Total momentum before = (20 X 20) - (18 X 17)
= 94
Total momentum after = 94
Y = Object speed after collision
94 = (20+18)Y
Y = 2.47368421 m/s