The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
While the answer is that it does, it transmits light VERY poorly. Most of the light bounces off it and the rest is refracted into the ocean. This is why you can't see much that is far away from you in the ocean unlike if you're just on land.
Hiiiii friends......
here is your answer.....
✌✌ Resistive force is a force where direction is opposite to the velocity of body or the sum of the other force and may refer to friction
now force lost by the machine
Answer:
power requirement is 23.52 ×
W
Explanation:
given data
flow rate q = 2 m³/s
elevation h = 1200 m
density of the water ρ = 1000 kg/m³
to find out
power requirement
solution
we will get power by the power equation that is
power = ρ× Q× g× h ...................1
put here all value we get power
power = ρ× Q× g× h
power = 1000 × 2 × 9.8 × 1200
power = 23.52 ×
so power requirement is 23.52 ×
W
Unless if all forces cancel each other out , the object will no longer be in equilibrium