This is false. Your hypothesis, or prediction, is just that: a prediction. Saying its a failure will result in bias.
Answer:
Explanation:
<u>Instant Velocity and Acceleration
</u>
Give the position of an object as a function of time y(x), the instant velocity can be obtained by

Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by

We are given the function for y

Note we have changed the last term to be quadratic, so the question has more sense.
The velocity is

And the acceleration is

Answer:
I think its structural plasticity.
Compute first for the vertical motion, the formula is:
y = gt²/2
0.810 m = (9.81 m/s²)(t)²/2
t = 0.4064 s
whereas the horizontal motion is computed by:
x = (vx)t
4.65 m = (vx)(0.4064 s)
4.65 m/ 0.4064s = (vx)
(vx) = 11.44 m / s
So look for the final vertical speed.
(vy) = gt
(vy) = (9.81 m/s²)(0.4064 s)
(vy) = 3.99 m/s
speed with which it hit the ground:
v = sqrt[(vx)² + (vy)²]
v = sqrt[(11.44 m/s)² + (3.99 m/s)²]
v = 12.12 m / s
Answer:
A - elastic since many other fast food items could be considered close substitutes.
Explanation:
The price elasticity of demand is how much the demand of the Big Macs will change due to a 1% change in price. Should the elasticity be greater than 1, the Big Macs will be elastic. Should it be less than 1, the Big Macs are inelastic.
Demand elasticity is calculated as the percentage change in quantity demanded divided by a percentage change in price.
Since Big Macs are (i) a luxury good, and (ii) have close substitutes (other burgers available at McDonalds and other fast food stores), we will say their elasticity is greater than 1.
This means that the demand of Big Macs will change due to a 1% increase in price due to the presence of close substitutes.