The chemical equation that represents the reaction of an Arrhenius acid and an Arrhenius base is 1) HC2H3O2 (aq) + NaOH (aq) ---> NaC2H3O2 (aq) + H2O (I)
Answer:
The correct answer is C. element
Explanation:
The sample cannot be an element because an element - or <em>elemental substance</em> - cannot be decomposed into simpler substances. Thus, it cannot be composed by differents types of atoms. For example, an element is carbon (C).
As the sample contains <u>three types of atoms</u>, it can be a compound, a molecule or a mixture, because they can be composed by different types of atoms - of different chemical elements. For example, the sample could contain the element carbon (C) combined with other elements, for example oxygen (O) or hydrogen (H), amoing others.
Answer:
3
Explanation:
It is based on empirical evidence
Electron - negligible mass, negative charge, orbits the nucleus
Proton - 1 AMU, positive charge, in the nucleus
Neutron, 1 AMU, no charge, in the nucleus
<span>Well it depends on percentage by what, but I'll just assume that it's percentage by mass.
For this, we look at the atomic masses of the elements present in the compound.
Cu has an atomic mass of 63.546 amu
Fe has 55.845 amu
and S has 36.065 amu
Since there are 2 molecules of Sulfur for each one of Cu and Fe, we'll multiply the Sulfur atomic weight by 2 to obtain 72.13 amu
So we have not established the mass of the compound in amus
63.546 + 55.845 + 72.13 = 191.521
That is the atomic mass of Chalcopyrite. and Iron's atomic mass is 55.845
So to get the percentage, or fraction of iron, we take 55.845 / 191.521
Which comes out to 29.15% by mass
Mass of the sample is not needed for this calculation, but since the question mentions it I would go ahead and check if the question isn't also asking for the mass of Iron in the sample as well, in which case you just find the 29.15% of 67.7g</span>