I think answer should be b. Please give me brainlest I hope this helps let me know if it’s correct or not okay thanks
Answer:
The boiling point of sample X and sample Y are exactly the same.
Explanation:
The difference between sample X and sample Y is that they occupy different volumes. However, they both contain pure water. Remember that pure water has uniform composition irrespective of its volume.
Volume does not affect the boiling point as long as the volume is small enough not to give rise to significant pressure changes in the liquid.
The boiling point of a liquid is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.
It can be clearly seen from the above that the volume of a solution of pure water does not affect its boiling point hence sample X and sample Y will have the same boiling point.
Divergent boundaries occur along spreading centers where plates are moving apart and new crust is created by magma pushing up from the mantle. Picture two giant conveyor belts, facing each other but slowly moving in opposite directions as they transport newly formed oceanic crust away from the ridge crest.
Answer:the medication would not last as long
Explanation:
Because of the desolving of the tablet so quickly it would
Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.