The new temperature (in °C) of the gas, given the data is –148.20 °C
<h3>Data obtained from the question </h3>
- Initial temperature (T₁) = 149.05 °C = 149.05 + 273 = 422.05 K
- Initial pressure (P₁) = 349.84 KPa
- Volume = constant
- New pressure (P₂) = 103.45 KPa
- New temperature (T₂) =?
<h3>How to determine the new temperature </h3>
The new temperature of the gas can be obtained by using the combined gas equation as illustrated below:
P₁V₁ / T₁ = P₂V₂ / T₂
Since the volume is constant, we have:
P₁ / T₁ = P₂ / T₂
349.84 / 422.05 = 103.45 / T₂
Cross multiply
349.84 × T₂ = 103.45 × 422.05
Divide both side by 349.84
T₂ = (103.45 × 422.05) / 349.84
T₂ = 124.80 K
Subtract 273 from 124.80 K to express in degree celsius
T₂ = 124.80 – 273
T₂ = –148.20 °C
Learn more about gas laws:
brainly.com/question/6844441
#SPJ1
One mole of hydrogen peroxide contains 6.02 x 10^23 molecules of hydrogen peroxide. And each molecule contains 4 atoms, so the answer is 4 x 6.02 x 10^23.
Answer:
1.12 × 10⁻⁴ M
Explanation:
Step 1: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 2: Make an ICE chart
We can relate the solubility product constant (Ksp) with the solubility (S) through an ICE chart.
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Ksp = 5.61 × 10⁻¹² = [Mg²⁺] × [OH⁻]² = S × (2S)² = 4S³
S = 1.12 × 10⁻⁴ M