Answer: 20,734.69 N/m
Explanation:
The elastic potential energy (ELPE) of the rubber band is given by
where
k is the spring constant
x = 0.035 m is the stretching of the rubber band
E = 12.7 J is the ELPE of the rubber band
Substituting the numbers and re-arranging the equation, we find
Answer:
• As heat is applied to one end of this material, atoms in the hotter region gain vibràtory energy at a maximum amplitude. They transfer it on to their neighboring atoms and heat is transfered along this material in form of vibràtory energy.
Explanation:
Answer:
Because of the presence of air resistance
Explanation:
When an object is in free fall, ideally there is only one force acting on it:
- The force of gravity, W = mg, that pushes the object downward (m= mass of the object, g = acceleration of gravity)
However, this is true only in absence of air (so, in a vacuum). When air is present, it exerts a frictional force on the object (called air resistance) with upward direction (opposite to the motion of free fall) and whose magnitude is proportional to the speed of the object.
Therefore, it turns out that as the object falls, its speed increases, and therefore the air resistance acting against it increases too; as a result, the at some point the air resistance becomes equal (in magnitude) to the force of gravity: when this happens, the net acceleration of the object becomes zero, and so the speed of the object does not increase anymore. This speed reached by the object is called terminal velocity.
Answer:
A = 2 cm
, λ = 8 cm
Explanation:
The amplitude of a wave is the maximum height it has, in this case the height is measured by the vertical ruler,
We are told the balance point is in the reading of 5 cm, that the maximum reading is 3 cm and the Minimum reading is 7 cm. Therefore, the distance from the ends of the ridge to the point of equilibrium is
d = 7-5 = 2 cm
d = 5-3 = 2 cm
A = 2 cm
The wavelength is the minimum horizontal distance for which the wave is repeated, that is measured by the horizontal ruler.
The initial reading for 4 cm and the final reading for 8 cm, this distance corresponds to a crest of the wave, the complete wave is formed by two crests whereby the wavelength is twice this value
Δx = 8-4 = 4 cm
λ = 2 Δx
λ = 8 cm
Microwaves c…………….nnsjksisisysgxgd