Answer:
In an acid-base equilibrium, acid becomes a conjugate base and base becomes a conjugate acid.
Explanation:
Let's remember the Bronsted-Lowry theory to answer this specific question. According to the theory, acid is a proton donor, while a base is a proton acceptor.
Consider an acid in a form HA (aq) and base in a form of B (aq). Since acid is a proton donor, it will donate its hydrogen ion to the base, B. The resultant products would be
(aq) and
(aq).
Remember that an acid-base reaction is an equilibrium reaction. This means we may also look at this proton transfer reaction from the product side towards the reactants. Summarizing what has been said, we may write the equilibrium as:
⇄ 
Now acid, HA, donates a proton to become a conjugate base. The conjugate base, if we look from the reverse equation side, is actually a base, since it can accept a proton to become HA. Similarly, B accepts a proton to become a conjugate acid. Looking from the reverse reaction, it can now donate a proton, so in reality we can consider it a base.
To summarize, your logic is correct.
Answer:
Ethanol
Explanation:
2 C atoms and a single OH group.
Formula: C2H5OH
<span>1.86 moles of hydrogen gas.
Since what the HCl is reacting with hasn't been mentioned, I'll assume zine. In that case, the balanced reaction is
Zn + 2HCl ==> ZnCl2 + H2
So for every 2 moles of HCl used, 1 mole of hydrogen gas will be generated. So let's figure out how many moles of HCl we have and then divide by 2.
Molarity is defined as moles/liter. So a 2.75 M HCl solution has 2.75 moles of HCl per liter. So the total number of moles we have is:
2.75 mole/L * 1.35 L = 3.7125 mol
And since we get 1 mole H2 per mole of HCl, we get:
3.7125 mol / 2 = 1.85625 mol
Rounding to 3 significant figures gives us 1.86 moles of hydrogen gas.</span>
Answer:
Qura'an is what makes my day, I read it every morning and it makes me relaxed. I love reading the Qura'an. Do dua for me because I hope I am gonna memorize it after I finish reading it with tajweed.
Explanation:
Surface tension under water results from greater attraction of liquid molecules to each other, due to a process called cohesion, than to molecules in the air, due to a process called adhesion.