Explanation:
(a) E = F/q
E = 4.8×10^-17/1.6×10^-19
E = 300 N/C
(b) same magnitude of electric field is exerted on proton
Answer:
2,500 feet (760 meters)
Explannation: <em>At about 2,500 feet (760 meters), the skydiver throws out a pilot chute, and it deploys the parachute. Its used to control the fall rate.</em>
Answer:
y <8 10⁻⁶ m
Explanation:
For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.
Therefore the diffraction equation for slits with m = 1 remains
a sin θ = λ
in general these experiments occur for oblique angles so
sin θ = θ
θ = λ / a
in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant
θ = 1.22 λ / a
The angles in these measurements are taken in radians, therefore
θ = s / R
as the angle is small the arc approaches the distance s = y
y / R = 1.22 λ / s
y = 1.22 λ R / a
let's calculate
y = 1.22 500 10⁻⁹ 0.42 / 0.032
y = 8 10⁻⁶ m
with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)
y <8 10⁻⁶ m
Answer
given,
before collision
mass of car A = m_a = 1300 kg
velocity of car A = v_a = 35 mph
mass of car B = m_b= 1000 kg
velocity of car B = v_b = 25 mph
after collision
V_a = 30 mph
V_b = 31.5 mph
Initial momentum



final momentum



here initial momentum is equal to the final momentum of the car.
hence, momentum is conserved in the collision.
Answer:
fjowe
Explanation:
kbegtrf3g4ef j3kq4ef 3w4beysrf2w4er8f6ywgbaebf7v2wy4egdwa4i6e5