1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
2 years ago
5

A person pulls a bucket of water up from a well with a rope. Assume the initial and final speeds of the bucket are zero (Vi-Vf-0

), and that the person lifted the bucket a vertical distance h. By looking at energy changes in the bucket-Earth physical system, we can make sense of the force the person must exert to pull the bucket up and the amount of work the person does. a) Think about whether this is an open or closed system. What energy systems undergo a change in energy during the process? Construct a particular Energy-System Diagram for this process and include the algebraic expression of energy conservation (in terms of AE's and if open, any Heat or Work). b) Substitute the algebraic expression we use for the change in gravitational potential energy and solve algebraically for the work done by the person on the rope/bucket. c) Use the definition of work in terms of force and distance (see p.39-40 of Chapter 2 in the Course Notes) to find the average force exerted by the person on the rope and bucket while they are lifting it up.

Physics
1 answer:
n200080 [17]2 years ago
6 0

Answer:

a

This a closed system because the mass of the system is conserved

The energy system that undergoes change is the Potential energy system

The energy system diagram is shown on the first uploaded image

b

Work done = Change in gravitational potential energy

So solving algebraically for work done would be

    Work done   = m*g*h

where m is mass

          g is acceleration due to gravity

          and h is the height

c

Work done in terms of force and distance is = mg

where  m is mass of bucket and

            g is acceleration due to gravity  

Explanation:

a) At the start, potential and kinetic energy were zero. so, energy is zero.

As the person pulls the bucket up, the potential energy becomes mgh.

so,final energy will be consisting of only potential energy.

B) Here work done is equal to change in gravitational potential energy.

W = \Delta P.E

W = m*g*h

where g = 9.9 m/s^2

C) Work = force * distance

mgh = force * h

force = mg

force = weight of bucket

You might be interested in
How much force does an 88kg astronaut exert on his chair while accelerating straight up at 10 m/s^2
Fed [463]
Force=mass*acceleration.         So 88kg*10 m/s^2=880 newtons
6 0
3 years ago
A particle (mass = 2.0 mg, charge = −6.0 μC) moves in the positive direction along the x axis with a velocity of 3.0 km/s. It en
Virty [35]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The acceleration would be  a = 0.003* 6 =0.018\  m/s^2    

Explanation:

The objective of this solution is to obtain the acceleration of the particle

       Now looking at Newton law which is mathematically represented as

                       F = ma

  Where F is the force experience by a particle

              m is the mass of the particle

              a is the acceleration of the particle

  And also this force is equivalent to magnetic force in a magnetic field which is mathematically represented as

                    F = qvB

Where q is the charge of the particle

             v is the velocity of the  charge

             B is the magnetic field the charge is under it influence

  Now equating this two formulas

                   ma = qvB

 Making a the subject we have

                  a = \frac{qvB}{m}

In the question the direction of the is in the positive x-axis which is i hence the direction would be in the i direction

      So substituting  (2.0i +3.0j+4.0k)mT = (2.0i +3.0j+4.0k)*10^{-3}T for B

                    a = \frac{q}{m} * v (2.0i +3.0j +4.0k)*10^{-3}

      Substituting       3.0 Km /s = 3.0*10^{3}\ m/s  for v  and -6.0 \muC = -6.0*10^{-6} C for q

                     a = \frac{-6.0*10^{-6}}{2.0*10^{-3}} * 3.0*10^{3} *(2i+3j+4k) *10^{-3}

                       a = 0.003 * 3i(2i+3j+4k)

                      a = 0.003 *((3*2)i \ \cdot i \ +(3*3) i \ \cdot \ j  \ + (3*4)i \ \cdot \ k)

According to vector multiplication

                                             i \cdot i = j \cdot j = k\cdot k = 1\\\\and \ i\cdot j = i\cdot k  = 0

     So

               a = 0.003* 6 =0.018\  m/s^2          

     

8 0
3 years ago
a ball of mass 100g moving at a velocity of 100m/s collides with another ball of mass 400g moving at 50m/s in same direction, if
klio [65]

Answer:

Velocity of the two balls after collision: 60\; \rm m \cdot s^{-1}.

100\; \rm J of kinetic energy would be lost.

Explanation:

<h3>Velocity</h3>

Because the question asked about energy, convert all units to standard units to keep the calculation simple:

  • Mass of the first ball: 100\; \rm g = 0.1\; \rm kg.
  • Mass of the second ball: 400\; \rm g = 0.4 \; \rm kg.

The two balls stick to each other after the collision. In other words, this collision is a perfectly inelastic collision. Kinetic energy will not be conserved. The velocity of the two balls after the collision can only be found using the conservation of momentum.

Assume that the system of the two balls is isolated. Thus, the sum of the momentum of the two balls will stay the same before and after the collision.

The momentum of an object of mass m and velocity v is: p = m \cdot v.

Momentum of the two balls before collision:

  • First ball: p = m \cdot v = 0.1\; \rm kg \times 100\; \rm m \cdot s^{-1} = 10\; \rm kg \cdot m \cdot s^{-1}.
  • Second ball: p = m \cdot v = 0.4\; \rm kg \times 50\; \rm m \cdot s^{-1} = 20\; \rm kg \cdot m \cdot s^{-1}.
  • Sum: 10\; \rm kg \cdot m \cdot s^{-1} + 20 \; \rm kg \cdot m \cdot s^{-1} = 30 \; \rm kg \cdot m \cdot s^{-1} given that the two balls are moving in the same direction.

Based on the assumptions, the sum of the momentum of the two balls after collision should also be 30\; \rm kg \cdot m \cdot s^{-1}. The mass of the two balls, combined, is 0.1\; \rm kg + 0.4\; \rm kg = 0.5\; \rm kg. Let the velocity of the two balls after the collision v\; \rm m \cdot s^{-1}. (There's only one velocity because the collision had sticked the two balls to each other.)

  • Momentum after the collision from p = m \cdot v: (0.5\, v)\; \rm kg \cdot m \cdot s^{-1.
  • Momentum after the collision from the conservation of momentum: 30\; \rm kg \cdot m \cdot s^{-1}.

These two values are supposed to describe the same quantity: the sum of the momentum of the two balls after the collision. They should be equal to each other. That gives the equation about v:

0.5\, v = 30.

v = 60.

In other words, the velocity of the two balls right after the collision should be 60\; \rm m \cdot s^{-1}.

<h3>Kinetic Energy</h3>

The kinetic energy of an object of mass m and velocity v is \displaystyle \frac{1}{2}\, m \cdot v^{2}.

Kinetic energy before the collision:

  • First ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.1\; \rm kg \times \left(100\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Second ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.4\; \rm kg \times \left(50\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Sum: 500\; \rm J + 500\; \rm J = 1000\; \rm J.

The two balls stick to each other after the collision. Therefore, consider them as a single object when calculating the sum of their kinetic energies.

  • Mass of the two balls, combined: 0.5\; \rm kg.
  • Velocity of the two balls right after the collision: 60\; \rm m\cdot s^{-1}.

Sum of the kinetic energies of the two balls right after the collision:

\displaystyle \frac{1}{2} \, m \cdot v^{2} = \frac{1}{2}\times 0.5\; \rm kg \times \left(60\; \rm m \cdot s^{-1}\right)^2 = 900\; \rm J.

Therefore, 1000\; \rm J - 900\; \rm J = 100\; \rm J of kinetic energy would be lost during this collision.

7 0
3 years ago
Two closed containers look the same but when is packed with LED and the other with a few feathers how could you determine which
Rudik [331]
You would want to push both containers, first one and then the other,
with exactly the same strength of push. 

The one that takes off slower (with less acceleration from the same
net force) is the one with more mass.
3 0
3 years ago
Read 2 more answers
Monochromatic light of wavelength 491 nm illuminates two parallel narrow slits 6.93 μm apart. Calculate the angular deviation of
Papessa [141]

To solve this problem we will apply the concepts related to the double slit experiment. Here we test a relationship between the sine of the deviation angle and the distance between slit versus wavelength and the bright fringe order. Mathematically it can be described as,

dsin\theta = m\lambda

Here,

d = Distance between slits

m = Any integer which represent the order number or the number of repetition of the spectrum

\lambda = Wavelength

\theta = Angular deviation

Replacing with our values we have,

(6.93*10^{-6}) sin\theta = (3)(491*10^{-9})

\theta = sin^{-1} (\frac{(3)(491*10^{-9}}{6.93*10^{-6}) })

Part A)

\theta = 0.2141rad

PART B)

\theta = 0.2141rad(\frac{360\°}{2\pi rad})

\theta =  12.27\°

3 0
3 years ago
Other questions:
  • Can someone explain to me #4.
    8·1 answer
  • according to adam smith and other classical economists, why is the economic theory supporting market economies(or capitalism) mu
    14·1 answer
  • What does the word deficiency mean<br> a.need<br> b.excess<br> c.problem<br> d.lack
    15·1 answer
  • Heeeeeeeeeeeeeeeeeelp​
    11·1 answer
  • Look at this picture of a whale shark. Which question about the whale shark is nonscientific?
    7·2 answers
  • FILL IN THE BLANKS!
    6·1 answer
  • two porters are available to carry a long timber wood.out of them one is weak.how to do you make less load to the weak one? writ
    10·1 answer
  • A car and a truck collide in an intersection and the merged wreck continues along. During the collision. both kinetic energy and
    9·1 answer
  • I need help with question 6 and 7!!! Also, how to do the back???
    5·2 answers
  • niobium metal becomes a superconductor when cooled below 9 k. its superconductivity is destroyed when the surface magnetic field
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!