1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
13

NEED HELP ASAP

Chemistry
1 answer:
katrin [286]3 years ago
7 0
Removing seed casings from grains is SEPARATING. a soda bubble bubbling when it is opened is MIXING. a bright copper statue turning green is MIXING. remove salt from seawater is SEPARATING. water decomposing is SEPARATING.
You might be interested in
Please help! Question is on the bottom​
choli [55]
It’s extremely bad quality I really can’t read it
8 0
3 years ago
If a chemical has a pH of 3, how could you alter its pH value to be more basic?
Andreyy89

Answer; If a chemical has a pH of 3, how could you change its pH value to be more basic? Adding water to a chemical will dilute the acid, thus lowering the pH value to more basic.

6 0
3 years ago
How does the law of conservation of mass relate to the number of atoms of each element that are present before a reaction vs. th
TiliK225 [7]
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.

The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.

According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.
6 0
3 years ago
If an ice cube weighing 25.0 g with an initial
riadik2000 [5.3K]

Answer:

11

∘

C

Explanation:

As far as solving this problem goes, it is very important that you do not forget to account for the phase change underwent by the solid water at

0

∘

C

to liquid at

0

∘

C

.

The heat needed to melt the solid at its melting point will come from the warmer water sample. This means that you have

q

1

+

q

2

=

−

q

3

(

1

)

, where

q

1

- the heat absorbed by the solid at

0

∘

C

q

2

- the heat absorbed by the liquid at

0

∘

C

q

3

- the heat lost by the warmer water sample

The two equations that you will use are

q

=

m

⋅

c

⋅

Δ

T

, where

q

- heat absorbed/lost

m

- the mass of the sample

c

- the specific heat of water, equal to

4.18

J

g

∘

C

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

and

q

=

n

⋅

Δ

H

fus

, where

q

- heat absorbed

n

- the number of moles of water

Δ

H

fus

- the molar heat of fusion of water, equal to

6.01 kJ/mol

Use water's molar mass to find how many moles of water you have in the

100.0-g

sample

100.0

g

⋅

1 mole H

2

O

18.015

g

=

5.551 moles H

2

O

So, how much heat is needed to allow the sample to go from solid at

0

∘

C

to liquid at

0

∘

C

?

q

1

=

5.551

moles

⋅

6.01

kJ

mole

=

33.36 kJ

This means that equation

(

1

)

becomes

33.36 kJ

+

q

2

=

−

q

3

The minus sign for

q

3

is used because heat lost carries a negative sign.

So, if

T

f

is the final temperature of the water, you can say that

33.36 kJ

+

m

sample

⋅

c

⋅

Δ

T

sample

=

−

m

water

⋅

c

⋅

Δ

T

water

More specifically, you have

33.36 kJ

+

100.0

g

⋅

4.18

J

g

∘

C

⋅

(

T

f

−

0

)

∘

C

=

−

650

g

⋅

4.18

J

g

∘

C

⋅

(

T

f

−

25

)

∘

C

33.36 kJ

+

418 J

⋅

(

T

f

−

0

)

=

−

2717 J

⋅

(

T

f

−

25

)

Convert the joules to kilojoules to get

33.36

kJ

+

0.418

kJ

⋅

T

f

=

−

2.717

kJ

⋅

(

T

f

−

25

)

This is equivalent to

0.418

⋅

T

f

+

2.717

⋅

T

f

=

67.925

−

33.36

T

f

=

34.565

0.418

+

2.717

=

11.026

∘

C

Rounded to two sig figs, the number of sig figs you have for the mass of warmer water, the answer will be

T

f

=

11

∘

C

Explanation:

3 0
2 years ago
Can someone help me ​
iogann1982 [59]

Answer:

i cant see it or i would

Explanation:

5 0
3 years ago
Other questions:
  • the alkaline earth metals are found in group 2 of the periodic table. which alkaline earth metal has the highest ionic radius ba
    14·2 answers
  • How do you convert 3.9mL to hL
    11·1 answer
  • Calculate the work (kJ) done during a reaction in which the internal volume expands from 28 L to 51 L against an outside pressur
    5·1 answer
  • Which is not a product of the fractional distillation of petroleum?
    7·1 answer
  • What is the product of barium + water​
    14·2 answers
  • Carbon monoxide and chlorine gas react to form phosgene:
    13·1 answer
  • Why might the ability to produce three-dimensional images of organs be helpful in diagnosing a patient's ailment?
    14·1 answer
  • 1 You place a 28.95-g piece of gold in a 10-ml graduated cylinder. The level of the water rises 1.50 mL. What is the density of
    14·1 answer
  • What is ph level of acid rain​
    14·1 answer
  • If you start with 4 moles of iron and 3 moles of oxygen to produce iron oxide, what is the limiting reagent? (You will need to b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!