The question is incomplete, the complete question is:
The element tin has the following number of electrons per shell: 2.8. 18, 18, 4. Notice that the number of electrons in the outer shell of a tin atom is the same as that for a carbon atom. Therefore, what must be true of tin? Tin is a polar atom and can bind to other polar atoms. Tin has a high molecular weight to give tin-containing molecules greater stabilty. All of the above Tin conform single covalent bonds with other elements, but not double or triple covalent bonds Tincan bind to up to four elements at a time
Answer:
Tin can bind to up to four elements at a time
Explanation:
Certain important points were made in the question about tin and one of them is that tin is an element in the same group as carbon hence it has the same number of valence electrons as carbon.
Carbon is always tetra valent. The tetra valency of carbon is the idea that carbon forms four bonds.
If tin has the same number of valence electrons as carbon, then, tin can bind to up to four elements at a time
Answer:
0.027 M HCl
Explanation:
The chemical equation of the neutralization is:
1 NaOH + 1 HCl -> 1 H2O + 1 NaCl
Because the ratio of NaOH and HCl is 1:1 you can use the M1V1=M2V2 formula.
(75 mL)(0.5 M NaOH) = (165 mL)(M HCl)
It requires 0.027 M HCl.
The phenotype depends on the dominant allele. Only people with aa genotype will express recessive traits. Hope this helped!
Answer:
Explanation:
Common Examples of the Law of Definite Proportions
Water, written as the chemical compound H20, is made up of atoms of hydrogen and oxygen. If one oxygen atom is combined with two hydrogen atoms, water is created.
<u>Answer:</u> The formation of given amount of oxygen gas results in the absorption of 713 kJ of heat.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of oxygen gas = 83 g
Molar mass of oxygen gas = 32 g/mol
Putting values in above equation, we get:

For the given chemical equation:

<u>Sign convention of heat:</u>
When heat is absorbed, the sign of heat is taken to be positive and when heat is released, the sign of heat is taken to be negative.
By Stoichiometry of the reaction:
When 3 moles of oxygen gas is formed, the amount of heat absorbed is 824.2 kJ
So, when 2.594 moles of oxygen gas is formed, the amount of heat absorbed will be = 
Hence, the formation of given amount of oxygen gas results in the absorption of 713 kJ of heat.