I Think The answer is d I hope it helps My friend Message Me if I’m wrong and I’ll change My answer and fix it for you
The answer is D. If you aren't consistent with your drop positions, then your data may be invalid. To be frank: it basically screws over the experiment.
Answer:
Because of the presence of air resistance
Explanation:
When an object is in free fall, ideally there is only one force acting on it:
- The force of gravity, W = mg, that pushes the object downward (m= mass of the object, g = acceleration of gravity)
However, this is true only in absence of air (so, in a vacuum). When air is present, it exerts a frictional force on the object (called air resistance) with upward direction (opposite to the motion of free fall) and whose magnitude is proportional to the speed of the object.
Therefore, it turns out that as the object falls, its speed increases, and therefore the air resistance acting against it increases too; as a result, the at some point the air resistance becomes equal (in magnitude) to the force of gravity: when this happens, the net acceleration of the object becomes zero, and so the speed of the object does not increase anymore. This speed reached by the object is called terminal velocity.
Answer:
A
Explanation:
potential energy is stored energy so the ball has potential energy to bounce or roll which would then have been converted to kinetic but the rest are in motion meaning energy is no longer stored but used in motion and therefore cannot be potential energy
√10(√10) = √10^2
The root and the square cancels:
√10^2 = 10
10 is your answer
hope this helps