Answer:
beryllium has a higher ionization energy because its radius is smaller. boron has a higher ionization energy because its radius is smaller.
Answer:
Mescarinic and Nicotinic
Explanation:
Postganglionic fibers can be present in both sympathetic and parasympathetic divisions, their main difference resides in how in the sympathetic division the postganglionic fibers are adrenergic and use norepinephrine (noradrenalin) as a neurotransmitter, in the parasympathetic division, on the other hand, fibers are cholinergic and use acetylcholine as a neurotransmitter, the<em> postganglionic neurons of sweat glands release acetylcholine for the activation of muscarinic receptors, another kind of receptor for acetylcholine are nicotinic receptors </em>that act as transmembrane sodium/potassium channels, while muscarinic receptors need to act through intracellular proteins.
I hope you find this informatiou useful and interesting! Good luck!
Answer: C)Anion, it would gain 2 electrons to satisfy the octet rule.
Explanation:
Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.
The electrons are filled according to Afbau's rule in order of increasing energies and thus the electronic configuration of oxygen with 8 electrons is

The cation is formed by loss of electrons and anions are formed by gain of electrons.
In order to complete its octet and get stable, it gains 2 electrons and thus would form an anion.

In order to calculate the mass of nitrogen, we must first calculate the mass percentage of nitrogen in potassium nitrate. This is:
% nitrogen = mass of nitrogen / mass of potassium nitrate
% nitrogen = 14 / 101.1 x 100
The mass of nitrogen = % nitrogen x sample mass
= (14 / 101.1) x 101.1
= 14 grams
The molar weight of nitrogen is 14. Each mole of urea contains two moles of nitrogen. Therefore, for there to be 14 grams of nitrogen, there must be 0.5 moles of urea.
Mass of urea = moles urea x molecular weight urea
Mass of urea = 0.5 x 66.06
Mass of urea = 33.03 grams