CO2 will be the first to boil because it will be the first to warm up because it is the closest temperature to 0
Answer/Explanation:
In June 1998 in Japan a scientist discovered that neutrinos (which is a type of particle) has weight, mass. This was later proven with some very convincing strong evidence.
<u><em>~ LadyBrain</em></u>
Answer:
Explanation:
mole of O₂ = 
= .25 moles
mole of CO₂
= 
= .1818 moles
moles of SO₂

= .125 moles
Total moles of gas
= .5568 moles.
total volume of gas mixture
= 22.4 x .5568 liter ( volume of one mole of any gas = 22.4 liter)
= 12.47 liter.
gas will exert partial pressure according to their mole fraction
gas having greatest no of moles in the total mole will have greatest mole fraction so
O₂ will have greatest partial pressure.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M