Answer:
A circular pizza has a angle of 360 degrees. When you cut it into 3 equal pieces you divide 360 by 3,you get 120 degrees. And following the conversion of 120 degree into radian you get 2pie/3 radians.
The correct answer is 1.07m.
The area surrounding an electric charge where its impact may be felt is known as the electric field. When another charge enters the field, the presence of an electric field may be felt. The electric field will either attract or repel the charge depending on its makeup. Any electric charge has a property known as the electric field. The charge and electrical force working in the field determine the strength or intensity of the electric field.
Here, is the charge per unit length, r is the distance from the wire, and
is the free space permittivity ε_0. Electric field due to the long straight wire is,
E= λ/2πε_0r
Rearrange the equation for r.
r=λ/2πε_0E
Substitute 2.41 N/C for E,
E=1.44×10^-10C/m
λ=8.85×10^-12C^2/Nm^2
r=(1.44×10^-10C/m)/(2(3.14)(8.85×10^-12C^2/Nm^2)(2.41N/C))
r=1.07m
At a distance of 1.07 m the magnitude of electric field is 2.41 N/C.
To learn more about electric field refer the link:
brainly.com/question/12821750
#SPJ4
Answer:
The inter-molecular forces holding non-polar compounds together is low compare to that of polar compounds. Therefore, it will take less energy to break the bond for non-polar compounds and vice versa. That is why polar compounds have higher melting points than non-polar compounds.
Explanation:
<span>Storm cells in a squall line typically move from the southwest to the northeast, and as the mature cells in the northeast begin to die off, new ones are formed at the opposite end to advance the line. The air in the southwest corner has strong vertical updrafts that allow new cells to grow and develop into thunderstorms.</span>
<u>Question:</u>
You are working on an experiment involving a very strong permanent magnet, and your data suggests that your magnet's field suddenly decreased during some interval in time. Such a decrease could have been caused by the magnet
A. Having overheated substantially
B. Being hit hard
C. Both A and B
D. Being grounded out
<h3><u>Answer:</u></h3>
A decrease in magnetic field of the permanent magnet have been caused by the magnet having overheated substantially or sharp impacts by being hit hard.
Option c
<h3><u>Explanation: </u></h3>
Permanent magnets are ferromagnetic materials with its magnetic domains aligned and grouped together in the same direction. These atomic domains maintain their directionality and hence a permanent magnet provides persistently strong magnetic fields without quick weakening. Some factors may lead to demagnetization or else a consistent reduction in magnetic strength.
Overheating a magnetic material realigns the magnetic domain regions and affects its directionality. When it reaches to a temperature defined as Curie temperature, varying with each material; the substance is no more a magnet due to complete randomness in the domain structure. As the temperature decreases and approaches the room temperature, magnetic field appears but is less in strength. Sudden impacts due to hitting may lead to random realignment of magnetic domains and thus decrease its magnetic strength.