1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
12

A space shuttle with a mass of approximately 7.08 E5 kg is sitting on the launch pad. What would be the weight of the space shut

tle as it prepares for launch?
If there’s any chance work can be shown that would be great, the equation we were told to work with is Wo=mog
Physics
1 answer:
Afina-wow [57]3 years ago
6 0

The weight of the shuttle is 6.94\cdot 10^6 N

Explanation:

The weight of an object on Earth is the gravitational force exerted by the Earth on the object.

The magnitude of the weight of an object is given by:

W=mg

where

m is the mass of the object

g=9.8 m/s^2 is the acceleration of gravity on Earth's surface

And the direction is downward (towards the Earth's centre).

For the shuttle in this problem, its mass is

m=7.08\cdot 10^5 kg

So, its weight is

W=(7.08\cdot 10^5)(9.8)=6.94\cdot 10^6 N

Note that while the mass of an object (m) does not change, its weight (W) changes according to the location, since the value of g can be different at different location (for example, on the Moon, the value of g is about 1/6 the value of g on the Earth).

Learn more about weight and forces:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

You might be interested in
What is the unit of measurement of velocity
melomori [17]

Usually the unit of measurement of velocity is meters per second or m/s

7 0
3 years ago
Read 2 more answers
If an astronaut throws an object in space, the object’s speed will _____
BigorU [14]
The object's speed will not change.

In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:
\sum F=ma
where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
7 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
Which example possesses mechanical potential energy?. A. a taut guitar string. B. an oscillating pendulum. C. a roller coaster r
Andrej [43]
<span>
The taut guitar string haspotencial energy which we can see in action.</span>  <span>· so option a is correct.</span>
6 0
3 years ago
Read 2 more answers
The diagram below shows a closed system of two tanks that each contain water.
lidiya [134]
Lmalemwlsnlenekenfndelenekf
4 0
3 years ago
Other questions:
  • How is the weight of an object in a spaceship near the moon related to the distance that the spaceship is from the moon?
    11·1 answer
  • Hiw many times lager then a centimeter is a dekagram​
    5·1 answer
  • An object with a mass of 5.0 Kg has a force of 20.0 newtons applied to it. What is the resulting acceleration of the object?
    11·1 answer
  • Determine the centripetal force on a vehicle rounding a circular curve with a radius of 80 m at a constant speed of 90 km/h if t
    12·1 answer
  • The longer the lever, the greater the
    14·1 answer
  • Which type of plate boundary is most closely associated with the formation of new ocean floor?
    6·1 answer
  • Which sentence provides evidence that heat travels from Earth’s mantle up to its crust?
    15·1 answer
  • a loaded sack of total mass is 1000 gramme falls down from the floor of a lorry 200cm high, calculate the workdone by the gravit
    13·1 answer
  • Resistances is inversely proprtional to___of the conductor​
    15·2 answers
  • (b) Complete the sentence about longitudinal
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!