We use the formula of the half-life to calculate for the remaining U-238 after 4.5 billion years. The formula is expressed as A = A₀ (1/2)^(t/h) where A is the final amount, A₀ is the initial amount of the substance, t is the time and h is the half-life of the substance wherein for U-238 h is equal to 4.47 billion years.
<span>A = A₀ (1/2)^(t/h)
</span>A = 50 (1/2)^(4.5 / 4.47)
A = 24.88 g
The heat transferred is -30J
When the gas undergoes compression, work is done on the gas and its internal energy increases.
According to the first law of thermodynamics, the increase in internal energyΔU is the sum of the heat given to the gas ΔQ and the amount of work done on the gas ΔW

The work done on the gas is 150 J due to compression and the internal energy of the gas increases by 120 J.
Therefore, the heat given to the gas is given by,

Thus, an amount of heat equal to 30 J flows out of the system.
Answer:
1.8*10^8m/s
Explanation:
Using
L= lo√1-v²/c²
So making v subject we have
V= c√1-4.8²/6²
V= 0.6*c
V= 0.6*3E8m/s
V= 1.8*10^8m/s
A.) kiloliter. 1 kiloliter = 1,000 liters
c.) megaliter. 1 megaliter = 1,000,000 liters
hope this helps
Answer:
The law of multiple proportions states that when two elements can combine in different ratios to form different compounds, the masses of the element combining with the fixed mass of another element result in whole number ratios. This shows that the law of multiple proportions is followed
Explanation: