A metallic conductor moving at a constant speed in a magnetic field may develop a voltage across it. This is an example of Motional emf
Hope this helps!
The answer is C. Life
Hope this helps! :)
Explanation:
Haemoglobin consists of heme unit which is comprised of an <u>
</u> and porphyrin ring. The ring has four pyrrole molecules which are linked to the iron ion. In oxyhaemoglobin, the iron has coordinates with four nitrogen atoms and one to the F8 histidine residue and the sixth one to the oxygen. In deoxyhaemoglobin, the ion is displaced out of the ring by 0.4 Å.
The prosthetic group of hemoglobin and myoglobin is - <u>Heme</u>
The organic ring component of heme is - <u>Porphyrin</u>
Under normal conditions, the central atom of heme is - <u>
</u>
In <u>deoxyhemoglobin</u> , the central iron atom is displaced 0.4 Å out of the plane of the porphyrin ring system.
The central atom has <u>six</u> bonds: <u>four</u> to nitrogen atoms in the porphyrin, one to a <u>histidine</u> residue, and one to oxygen.
Answer:
can only be determined experimentally.
Explanation:
In the early days of inorganic chemistry, the structure of complex ions remained a mystery hence the name ''complex''.
These ions appear to have structures that defied accurate elucidation. However, by diligent laboratory investigation, Alfred Werner was able to accurately determine the structure of cobalt complexes. As a result of this, he is regarded as a pathfinder in coordination chemistry.
Hence, the structure of complex ions can only be determined experimentally.
Answer:
Ammonia is limiting reactant
Amount of oxygen left = 0.035 mol
Explanation:
Masa of ammonia = 2.00 g
Mass of oxygen = 4.00 g
Which is limiting reactant = ?
Balance chemical equation:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
Number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 2.00 g/ 17 g/mol
Number of moles = 0.12 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 4.00 g/ 32 g/mol
Number of moles = 0.125 mol
Now we will compare the moles of ammonia and oxygen with water and nitrogen.
NH₃ : N₂
4 : 2
0.12 : 2/4×0.12 = 0.06
NH₃ : H₂O
4 : 6
0.12 : 6/4×0.12 = 0.18
O₂ : N₂
3 : 2
0.125 : 2/3×0.125 = 0.08
O₂ : H₂O
3 : 6
0.125 : 6/3×0.125 = 0.25
The number of moles of water and nitrogen formed by ammonia are less thus ammonia will be limiting reactant.
Amount of oxygen left:
NH₃ : O₂
4 : 3
0.12 : 3/4×0.12= 0.09
Amount of oxygen react = 0.09 mol
Amount of oxygen left = 0.125 - 0.09 = 0.035 mol