Answer:
It’s true
Explanation:
If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system. ... The Law of Conservation of Mass holds true because naturally occurring elements are very stable at the conditions found on the surface of the Earth.
Answer:
437 g
Explanation:
as mass = density × volume
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles
Answer:
15.4%
Explanation:
If Ka = 0.54 mM = 1.51x10⁻⁵
Then;
C₄H₈O₂ --------> C₄H₇O₂⁻ + H⁺
I 0.54x10⁻³ 0 0
E 0.54x10⁻³(1-x) 0.54x10⁻³x 0.54x10⁻³x
Recall that x is the percentage degree of dissociation
From the ICE table;
Ka = [C₄H₇O₂⁻] [ H⁺]/[C₄H₈O₂]
1.51x10⁻⁵=(0.54x10⁻³x) (0.54x10⁻³x)/ 0.54x10⁻³(1-x)
1.51x10⁻⁵ = 0.54x10⁻³x^2/1-x
1.51x10⁻⁵(1-x) = 0.54x10⁻³x^2
1.51x10⁻⁵ - 1.51x10⁻⁵x = 0.54x10⁻³x^2
Hence;
0.54x10⁻³x^2 + 1.51x10⁻⁵x - 1.51x10⁻⁵=0
x^2 + 0.028x - 0.028 = 0
Solving the quadratic equation here;
x = 0.154 or −0.182
Ignoring the negative result, x = 0.154
Hence, fraction of butanoic acid that is in the dissociated form in this solution = 15.4%
Answer:- B. 4.65 g.
Solution:- The given balanced equation is:

It asks to calculate the mass of silver sulfide formed by when 0.0150 liters of 2.50 M of silver nitrate are used.
Moles of silver nitrate are calculated on multiplying it's liters by its molarity and then on multiplying by mol ratio, the moles of silver sulfide are calculated. These moles are multiplied by the molar mass to convert to the grams.
Molar mass of
= 2(107.87)+32.06 = 247.8 g per mol
The dimensional set up for the complete problem is:

= 
So, the correct choice is B. 4.65 g.