It would be 35.8 Calories or calories. Not sure about that part. Hope this helps though.
<u>Answer:</u> The red litmus paper turns blue on dipping in NaOH solution.
<u>Explanation:</u>
Litmus paper is the indicator that detects the nature of the solution, whether it is acidic or basic.
There are 2 types of litmus paper:
- <u>Red litmus paper:</u> This paper will turn blue if it is dipped in basic solution and will remain as such if it is dipped in acidic solution.
- <u>Blue litmus paper:</u> This paper will turn red if it is dipped in acidic solution and will remain as such if it is dipped in basic solution.
NaOH is a strong base, so when a red litmus paper is dipped in the beaker having necessary amount of NaOH, the red litmus paper turns into blue.
The equilibrium for the dissolution of the weak base is ;(CH3)2NH(aq) + H2O(l) ⇄ (CH3)2NH3^+(aq) + OH^-(aq)
<h3>What is a weak base?</h3>
A weak base is one that does not ionize completely in solution. As such, a weak base will have a very low base dissociation constant Kb reflecting its minimal dissociation in solution.
The question is incomplete hence we are are unable to work out the equilibrium but in solution it will look like this;
(CH3)2NH(aq) + H2O(l) ⇄ (CH3)2NH3^+(aq) + OH^-(aq)
Learn more about weak base: brainly.com/question/4131966
Answer:
-26.125 kj
Explanation:
Given data:
Mass of water = 250.0 g
Initial temperature = 30.0°C
Final temperature = 5.0°C
Amount of energy lost = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 5.0°C - 30.0°C
ΔT = -25°C
Specific heat of water is 4.18 j/g.°C
Now we will put the values in formula.
Q = m.c. ΔT
Q = 250.0 g × 4.18 j/g.°C × -25°C
Q = -26125 j
J to kJ
-26125 j ×1 kj /1000 j
-26.125 kj