Answer:
h₍₁₎ = 495,1 meters
h₍₂₎ = 480,4 m
h₍₃₎ = 455,9 m
...
..
Explanation:
The exercise is "free fall". t = 
Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s
The heights (h) according to his time (t) are found according to the formula:
h(t) = 500 - 1/2 * g * t²
Remplacing "t" with the desired time.
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ
According to law of conservation of mass within a reaction,
The mass of the compound formed is (23+35.5) grams means 58.5 grams of sodium chloride[NaCl] will be formed.
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2 /><h2>

</h2><h2>
_____________________________________</h2>
<h2>DATA:</h2>
mass = m = 2kg
Distance = x = 6m
Force = 30N
TO FIND:
Work = W = ?
Velocity = V = ?
<h2>
SOLUTION:</h2>
According to the object of mass 2 kg travels a distance when the force was exerted on it. The graph between the Force and position was plotted which shows that 30 N of force was used to push the object till the distance of 6.0m.
To find the work, I will use the method of determining the area of the plotted graph. As the graph is plotted in the straight line between the Force and work, THE PICTURE ATTCHED SHOWS THE AREA COVERED IN BLUE AS WORK DONE AND HEIGHT AS 30m AND DISTANCE COVERED AS 6m To solve for the area(work) of triangle is given as,

Base is the x-axis of the graph which is Position i.e. 6m
Height is the y-axis of the graph which is Force i.e. 30N
So,

W = 90 J
The work done is 90 J.
According to the principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.



<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2>