Answer:
C. Both technicians A and B
Explanation:
From the physical definition, power is defined as the rate of a body doing work. It is expressed as
P = w/t watts
Where
w - is the work done or the energy of the system in joules
t - time
The unit of power is represented in watts.
Whenever there is a rate of change of energy in the system, it accounts for the efficiency of the power of the system.
Hence, the statements of both technicians are correct.
Answer:
-4×-2y=14 (1)
-10×+7y=-25 (2)
multiplying eq 1 by 7 and eq 2 by 2 and add eq. 1 and 2
-28×-14y=98
-20×+14y=-50
___________
-28×=48
×=48/-28
×=-12/7
now
-4×-2y=14
-4*-12/7-2y=14
48/7-2y=14
-2y=14-48/7
-2y=(98-48)/7
-2y=50/7
y=-50/14
y=-25/7
Answer:
because of their web feet
Explanation:
oke
Answer: final Velocity v = 10.2m/s
Explanation:
Final speed v(t) is given as
v(t) = u + at .......1
Where; u = the initial speed
a = acceleration
t = time taken
The total distance travelled d is given as
d = ut + 1/2(at^2)
Given
d = 5.0m
u = 2.0m
a = g = 10m/s2 (acceleration due to gravity)
Substituting into the equation above we have
5 = 2t + 5t^2
5t^2 +2t -5 = 0
Applying the quadratic formula. We have;
t = 0.82s & t = -1.22s
t cannot be negative
t = 0.82s
From equation 1 above
v = 2.0m/s + 10(0.82)m/s
v = 10.2m/s
Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m