Time = (distance) / (speed)
<em></em>
Time = (450 km) / (100 m/s)
Time = (450,000 m) / (100 m/s)
Time = <em>4500 seconds </em>(that's 75 minutes)
Note:
This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.
If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.
The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.
Answer:
i believe its 26.7
Explanation:
if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s
Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.
Answer:
The correct answer is a
Explanation:
At projectile launch speeds are
X axis vₓ = v₀ = cte
Y axis
= v_{oy} –gt
The moment is defined as
p = mv
For the x axis
pₓ = mvₓ = m v₀ₓ
As the speed is constant the moment is constant
For the y axis
p_{y} = m v_{y} = m (v_{oy} –gt) = m v_{oy} - m (gt)
Speed changes over time, so the moment also changes over time
Let's examine the answer
i True
ii False. The moment changes with time
The correct answer is a
Answer:
3kg sledgehammer swung at 1.5 m/s
Explanation:
Small Sledgehammer:
Mass:3.0
Velocity:1.5
MASS×VELOCITY=MOMENTUM
3.0×1.5= 4.5 (momentum)
Large Sledgehammer:
Mass:4.0
Velocity:0.9
4.0×0.9=3.6 (momentum)
higher momentum is the smaller Sledgehammer.