The first location to see the partial solar eclipse begin is at 3.58 a.m. EST (08:58 UTC), the greatest point of total solar eclipse occurs at 6 a.m. EST (11:00 UTC) and the last location to see the partial eclipse end is at 8:02 a.m. EST (13:02 UTC) according to Time and Date.
I'm pretty sure the energy an object acquires when exposed to a force is known was potential energy.
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>
Answer:
g / 16
Explanation:
T = 2π 
angular frequency ω = 2π /T
= 
ω₁ /ω₂ = 
Putting the values
ω₁ = ω , ω₂ = ω / 4
ω₁ /ω₂ = 4
4 = 
g₂ = g / 16
option d is correct.
Answer:
(a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other
Explanation:
Given that,
Angle of incidence = 30.0°
Index of reflection of glass = 1.52
(a). We need to calculate the angle of refraction for the ray inside the glass
Using snell's law


Put the value into the formula



(b). We know that,
The incident ray and emerging ray is equal then the ray will be parallel.
We need to prove that the rays in air on either side of the glass are parallel to each other
Using formula for emerging ray


Put the value into the formula



So, 
This is proved.
Hence, (a). The angle of refraction is 19.26°.
(b). That is proved that the rays in air on either side of the glass are parallel to each other