1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
2 years ago
14

Assuming the incline to be frictionless and the zero of gravitational potential energy to be at the elevation of the horizontal

line, Group of answer choices the kinetic energy of the block when it has fully compressed the spring will be the kinetic energy of the block just before it collides with the spring will be equal to mgh. the kinetic energy of the block when it has fully compressed the spring will be equal to mgh. the kinetic energy of the block when it has fully compressed the spring will be zero. the kinetic energy of the block just before it collides with the spring will be kx2. Not saved Questions AnsweredQuestion 1 AnsweredQuestion 2 AnsweredQuestion 3 AnsweredQuestion 4 AnsweredQuestion 5 AnsweredQuestion 6 AnsweredQuestion 7 AnsweredQuestion 8 AnsweredQuestion 9 Haven't Answered YetQuestion 10 Time Elapsed: Hide Attempt due: Oct 12 at 11:59pm
Physics
1 answer:
Leya [2.2K]2 years ago
4 0

The energy in the system is given by the law of conservation of energy.

The energy stored in the spring plus the gravitational potential energy of the block when it has fully compressed the spring will be equal to m·g·h.

Reason:

The given parameters are;

Surface of the inclined plane = Frictionless

Potential energy at the horizontal line = Zero of gravitational potential

By the law of Conservation of Energy, we have;

The spring will be compressed by a distance, <em>x</em>

The energy stored in the compressed spring, K.E. = (1/2)·k·x²

Energy in the block when the block comes to rest at a height, h₁, will be, P.E. = m·g·h₁

Therefore, by conservation of energy, we have;

The initial potential of the block = The stored energy in the compressed string + The gravitational potential energy of the block when it has compressed.

Therefore, the correct option is; <u>The energy stored in the spring plus the gravitational potential energy of the block when it has fully compressed the spring will be equal to m·g·h</u>

Learn more here;

brainly.com/question/17713698

You might be interested in
Which of the following could be vector magnitudes?
SOVA2 [1]

Answer:

Both A and D

Explanation:

Vector magnintude contains both speed and direction and so do these answer choices of 15km and 30m/s

5 0
3 years ago
Read 2 more answers
A horizontal spring with stiffness 0.4 N/m has a relaxed length of 11 cm (0.11 m). A mass of 21 grams (0.021 kg) is attached and
riadik2000 [5.3K]

Answer:

0.6983 m/s

Explanation:

k = spring constant of the spring = 0.4 N/m

L₀ = Initial length = 11 cm = 0.11 m

L = Final length = 27 cm = 0.27 m

x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m

m = mass of the mass attached = 0.021 kg

v = speed of the mass

Using conservation of energy

Kinetic energy of mass = Spring potential energy

(0.5) m v² = (0.5) k x²

m v² = k x²

(0.021) v² = (0.4) (0.16)²

v = 0.6983 m/s

5 0
3 years ago
The distance between adjacent nodes in a standing wave pattern in a length of string is 25.0 cm:A. What is the wavelength of wav
mina [271]

A) 50 cm

B) 10000 cm/s

Explanation

Step 1

A)

If you know the distance between nodes and antinodes then use this equation:

\begin{gathered} \frac{\lambda}{2}=D \\ \text{where}\lambda\text{ is the wavelength} \\ D\text{ is the distance betw}een\text{ nodes} \end{gathered}

then, let

D=\text{ 25 cm }

now, replace to find the wavelength

\begin{gathered} \frac{\lambda}{2}=25 \\ \text{Multiply both sides by 2} \\ \frac{\lambda}{2}\cdot2=25\cdot2 \\ \lambda=50\text{ Cm} \end{gathered}

so, the wavelength is

A) 50 cm

Step 2

The speed of a wave can be found using the equation

v=\lambda f

or velocity = wavelength x frequency,

then,let

\begin{gathered} \lambda=50\text{ cm} \\ f=200\text{ Hz} \end{gathered}

replace and evaluate

\begin{gathered} v=\lambda f \\ v=50\text{ cm }\cdot200\text{ HZ} \\ v=10000\text{ }\frac{\text{cm}}{s} \end{gathered}

so

B) 10000 cm/s

I hope this helps you

6 0
1 year ago
If a rock were dropped from a building it would hit the ground with a certain kinetic energy and velocity. If it fell from a roo
STALIN [3.7K]

Answer:

no

Explanation:

because if you test it they hit the ground at the same time.

5 0
3 years ago
What provides the power to move the cutting blade on a sawmill?
Lynna [10]
Sawmills rely on electricity to run the cutting blade.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Consider the following statements. A. Heat flows from an object at higher temperature to an object at lower temperature; B. Heat
    5·1 answer
  • A fire truck has a searchlight with a resistance of 60 (ohm) which is placed across a 24-V battery. What is the current in this
    15·1 answer
  • How has God designed sound waves so that a person is able to hear all the different instruments in a musical piece at the same t
    11·1 answer
  • calculate the acceleration of a 520 kg car that had 5050N of net force exerted on it by the engine. explain how you solve the pr
    10·1 answer
  • Two particles A and B start from rest at the origin x = 0 [ft] and move along a straight line such that a = (613) Ift/s) and ag
    8·1 answer
  • A passenger on a stopped bus notices that rain is falling vertically just outside the window. When the bus moves with constant v
    14·1 answer
  • The energy band gap of GaAs is 1.4eV. calculate the optimum wavelength of light for photovoltaic generation in a GaAs solar cell
    7·1 answer
  • When light passes the
    11·1 answer
  • Density is equal to
    9·1 answer
  • The amount of force applied per given area is
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!