Answer:
131.5 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
First, we will calculate the standard enthalpy of the reaction (ΔH°).
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)
) - 1 mol × ΔH°f(CaCO₃(s)
)
ΔH° = 1 mol × (-634.9 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1207.6 kJ/mol)
ΔH° = 179.2 kJ
Then, we calculate the standard entropy of the reaction (ΔS°).
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)
) - 1 mol × S°(CaCO₃(s)
)
ΔS° = 1 mol × (38.1 J/mol.K) + 1 mol × (213.8 J/mol.K) - 1 mol × (91.7 J/mol.K)
ΔS° = 160.2 J/K = 0.1602 kJ/K
Finally, we calculate the standard Gibbs free energy of the reaction at T = 25°C = 298 K.
ΔG° = ΔH° - T × ΔS°
ΔG° = 179.2 kJ - 298 K × 0.1602 kJ/K
ΔG° = 131.5 kJ
Answer:
(edit: nvm I figured it out, here is the answer)
Explanation:
Answer:
a) 1.248 x 10⁷ kg
b) 1.248 x 10⁴ Mg
c) 1.248 x 10¹³ mg
d) 1.248 x 10⁴ ton
Explanation:
a) Since 1000 g = 1 kg we can convert grams to kg by multiplyig any given quantity in grams by the conversion factor ( 1 kg / 1000 g):
1.248 x 10¹⁰ g * (1 kg / 1000 g) = 1.248 x 10⁷ kg
b) Since 1 Mg = 1 x 10⁶ g, the conversion factor will be ( 1 Mg / 1 x 10⁶ g):
1.248 x 10¹⁰ g * ( 1 Mg / 1 x 10⁶ g) = 1.248 x 10⁴ Mg
c) Since 1 mg = 1 x 10⁻³ g, the conversion factor will be ( 1 mg / 1 x 10⁻³ g):
1.248 x 10¹⁰ g ( 1 mg / 1 x 10⁻³ g) = 1.248 x 10¹³ mg
d) Since 1 metric ton = 1000 kg and 1000 g = 1 kg, we can use these conversions factors: ( 1 kg / 1000 g) and (1 ton / 1000 kg):
1.248 x 10¹⁰ g * ( 1 kg / 1000 g) * ( 1 ton / 1000 kg) = 1.248 x 10⁴ ton
<span> </span> <span>V = nRT/P =
(0.875)(0.082057)(273)/(1) = 19.6 L</span>