Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1
Answer:
22.5 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 30 m/s
Time (t) = 1.5 s
Final velocity (v) = 0 m/s
Distance (s) =?
The distance to which the car move before stopping from the time the driver applied the brake can be obtained as follow:
s = (u + v)t/2
s = (30 + 0)1.5 / 2
s = (30 × 1.5) / 2
s = 45 / 2
s = 22.5 m
Thus, the car will move to a distance of 22.5 m before stopping from the time the driver applied the brake.
Answer:
11700j
Explanation:
add the two because the plate has to maintain the temp.
2700+9000=11700
I don’t think I’m right but I want to say 500 m/s