Answer:
P₂ = 2 P₁
we conclude that in the second time the power used is double that in the first rise
Explanation:
In this exercise we are asked the power to climb the stairs, if we assume that we go up with constant speed, we use an energy equal to the potential energy due to the difference in height of the stairs, as this height is constant the potential energy does not change and therefore therefore the energy used by us does not change either.
Now we can analyze the required power,
P = W / t
From the analysis of the previous paragraph the work is equal to the energy used, according to the work energy theorem,
therefore the first time the power is
P₁ = E / 10
P₁ = 0.1 E
for the second time the power is
P₂ = E / 5
P₂ = 0.2 E
we see that the power in the second case is
P₂ = 2 P₁
Therefore, we conclude that in the second time the power used is double that in the first rise.
Answer:
Hund's rule
Explanation:
Hund's rule is defined as the rule whose first rule in the chemistry says that, for a given electronic configuration, the term which posses lowest energy has maximum multiplicity. The multiplicity is defined as the tem 2S+1, where S is the total spin angular momentum.
Therefore, the term which has lowest energy that term posses maximum number of S.
Hund's rule of maximum multiplicity: Electron present in same energy orbitals firstly they completed half orbit than start pairing.
Therefore, the energy of lowest configuration for an atom is the one having the maximum number of unpaired electron which is allowed by the Pauli principle in a particular set of degenerate orbit is called Hund's rule.