Wood frogs have this adaptation where they accumulate urea in their bodies and convert their liver glycogen to glucose to act as cryoprotectants. This prevents the formation of ice crystals in their bodies that could cause damage cells during freezing in winter.
Answer:
Main Difference Between Mechanical and Electromagnetic waves
A wave is composed of some kind of disturbance that propagates. We can classify waves into many different types based on their properties. One of the properties of the waves depends on whether they need a medium to propagate or not. The primary difference between electromagnetic and mechanical waves is also based on this property. Mechanical waves need a medium, while electromagnetic waves do not need a medium to propagate. Electromagnetic waves can travel through a vacuum. The other differences between mechanical and electromagnetic waves are given below:
Electromagnetic waves can travel through a vacuum, that is an empty space, whereas mechanical waves cannot. They need a medium to travel such as water or air. Ripples in a pond are an example of mechanical waves whereas electromagnetic waves include light and radio signals, which can travel through the vacuum of space.
Mechanical waves can be classed as elastic waves because their transmission depends on the medium's (water, air etc.) elastic properties.
Electromagnetic waves are caused because of the varying magnetic and electric fields. They are produced by the vibration of the charged particles.
Because of these differences, the speed of each type of wave varies significantly. Electromagnetic waves travel at the speed of light but mechanical waves are far slower.
Have a wonderful day!
~Lillith of brainly~
Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
Answer:4-strikes the plane at same time as the other body
Explanation:
Given
If both bodies is falling on a horizontal plane and second body is given an acceleration in horizontal direction then it does not change the time to reach the Horizontal Plate as there is no change in vertical direction.
Horizontal acceleration will give only horizontal range and horizontal velocity.