Answer:
282 m
Explanation:
Given:
v₀ = 20.1 m/s
v = 33.2 m/s
t = 10.6 s
Find: Δx
Δx = ½ (v + v₀) t
Δx = ½ (33.2 m/s + 20.1 m/s) (10.6 s)
Δx ≈ 282 m
Answer:
a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Explanation:
a) the polarization the determined wave oscillates the electric field, which is the z axis
As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis
the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Answer:
Acceleration of proton will be 
Explanation:
We have given a proton is placed in an electric field of intensity of 700 N/C
So electric field E = 700 N/C
Mass of proton 
Charge on proton 
So electric force on the proton 
This force will be equal to force due to acceleration of the proton
According to newton's law force is given by F = ma
So 

So acceleration of proton will be 
Answer:
waves
Explanation:
There are three major ways in which heat or thermal energy is transferred namely: conduction, convection and radiation. Please find the description of each below;
- Conduction is the method of heat transfer which involves a physical contact between the substances involved.
- Convection, on the contrary, occurs via a liquid medium
- RADIATION is a method of heat transfer which involves neither physical contact or liquid medium (matter) but occurs through WAVES e.g electromagnetic waves. For example, the sun transfers heat to the Earth via RADIATION.
D. be transported from place to place
because it does allow c to happen but not directly as it would have to go through condensation first.
When the water is evaporated in the air it can be moved from place to place by the wind.