That place is the "Uluru- Kara That National Park"
Telescopes, because we can visually visit the moon lol.
Camera Pills, so we can see the inside of a person
Answer:
5702.88 J or 5.7mJ
Explanation:
Given that :
C 1 = 6.0-μF
C 2 = 4.0-μF
V 1 = 50V
V 2 = 34V
Note that : Q = CV
Q 1 = C1 * V1
Q 1 = 50×6 = 300μC
Q 2 = 34×4 = 136μC
Parallel connection = C 1 + C 2
= 6+4 = 10μC
V = Qt/C
Where Qt = Q1+Q2
V = Q1+Q2/C
V = 300+136/10
V = 437/10
V = 43.6volts
Uc1 = 1/2×C1V^2
= 1/2 × 6μF × 43.6^2
= 1/2 × 6μF × 1900.96
= 3μF × 1900.96volts
= 5702.88J
= 5702.88J/1000
= 5.7mJ
Mass, m = 4g = 0.004 kg
Velocity, = 50cm/s = 0.5m/s
Distance, 10cm = 0.1m
The wall would have to resist the energy acquired by the bullet.
Kenetic Energy of bullet = Resistance offered by the wall.
1/2 mv² = Resistance Force * Distance
(1/2) * 0.04 * 0.5 * 0.5 = F * 0.1
0.5 * 0.04 * 0.5 * 0.5 = F * 0.1
0.5 * 0.04 * 0.5 * 0.5/0.1 = F
0.05 = F
Therefore, Resistance offered by the wall = 0.05 N
Answer:
3.33 seconds
Explanation:
We can use the velocity formula [ v = u + at ] to solve.
Find the value "u".
135km/h -> 135km*1000m/3600s -> 37.5m/s
Find the value "v".
75km/h -> 75km*1000m/3600s -> 20.83m/s
Keep in mind we are dealing with "deceleration" so when we input 5.0m/s into the formula, it will be a negative value.
Now, find "t" which is the value we aren't given with the values we're given in the question.
20.83 = 37.5 - 5t
-16.67 = -5t
3.33 = t
Best of luck!