Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
Answer:
The magnitude of F₁ is 3.7 times of F₂
Explanation:
Given that,
Time = 10 sec
Speed = 3.0 km/h
Speed of second tugboat = 11 km/h
We need to calculate the speed


The force F₁is constant acceleration is also a constant.

We need to calculate the acceleration
Using formula of acceleration



Similarly,

For total force,


The speed of second tugboat is


We need to calculate total acceleration



We need to calculate the acceleration a₂



We need to calculate the factor of F₁ and F₂
Dividing force F₁ by F₂



Hence, The magnitude of F₁ is 3.7 times of F₂
Answer:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).
Explanation:
Velocity is the rate of motion in a specific direction. ... My velocity is 30 kilometers per hour that-a-way. Average speed is described as a measure of distance divided by time. Velocity can be constant, or it can change (acceleration).