1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
6

Gravity and Electromagnetic force

Physics
2 answers:
nekit [7.7K]3 years ago
8 0

Answer:

1) Gravitational force and electromagnetic force both are field forces which means both forces exerted from long range of distance and we do not require any physical contact to apply these type of forces.

2) Now we also know that

F_g = \frac{Gm_1m_2}{r^2}

F_e = \frac{kq_1q_2}{r^2}

both the forces are inversely depends on the square of the distance between two charges or two masses

so both forces follow inverse square law.

Now two ways they are alike is

1) gravitational force never exist in form of repulsive force while electromagnetic force is either repulsive or attractive.

2) Gravitational force is independent of the medium between two masses while electromagnetic force is dependent on the medium between two charges

Sladkaya [172]3 years ago
6 0
Differences between gravitational and electromagnetic radiation

So far we have been emphasizing how, at a fundamental level, the generation and propagation of gravitational and electromagnetic radiation are basically quite similar. This is a major point in demystifying gravitational waves. But, on a more practical level, gravitational and electromagnetic waves are quite different: we see and use electromagnetic waves every day, while we have yet to make a confirmed direct detection of gravitational waves (which is why they seemed so mysterious in the first place).

There are two principal differences between gravity and electromagnetism, each with its own set of consequences for the nature and information content of its radiation, as described below.

<span><span><span>Gravity is a weak force, but has only one sign of charge.
Electromagnetism is much stronger, but comes in two opposing signs of charge.</span>
This is the most significant difference between gravity and electromagnetism, and is the main reason why we perceive these two phenomena so differently. It has several immediate consequences:<span>Significant gravitational fields are generated by accumulating bulk concentrations of matter. Electromagnetic fields are generated by slight imbalances caused by small (often microscopic) separations of charge.<span>Gravitational waves, similarly, are generated by the bulk motion of large masses, and will have wavelengths much longer than the objects themselves. Electromagnetic waves, meanwhile, are typically generated by small movements of charge pairs within objects, and have wavelengths much smaller than the objects themselves.</span><span>Gravitational waves are weakly interacting, making them extraordinarily difficult to detect; at the same time, they can travel unhindered through intervening matter of any density or composition. Electromagnetic waves are strongly interacting with normal matter, making them easy to detect; but they are readily absorbed or scattered by intervening matter. 

</span><span>Gravitational waves give holistic, sound-like information about the overall motions and vibrations of objects. Electromagnetic waves give images representing the aggregate properties of microscopic charges at the surfaces of objects.</span></span>
</span><span><span>Gravitational charge is equivalent to inertia.
Electromagnetic charge is unrelated to inertia. </span>
This is the more fundamental difference between electromagnetism and gravity, and influences many of the details of gravitational radiation, but in itself is not responsible for the dramatic differences in how we perceive these two types of radiation. Most of the consequences of the principle of equivalence in gravity have already be discussed, such as:<span><span>The fundamental field of gravity is a gravitational force gradient (or tidal) field, and requires an apparatus spread out over some distance in order to detect it. The fundamental field in electromagnetism is an electric force field, which can be felt by individual charges within an apparatus.</span><span>The dominant mode of gravitational radiation is quadrupolar: it has a quadratic dependence on the positions of the generating charges, and causes a relative "shearing" of the positions of receiving charges. The dominant mode of electromagnetic radiation is dipolar: it has a linear dependence on the positions of the generating charges, and creates a relative translation of the positions of receiving charges.</span></span></span></span>
You might be interested in
A ball (with a weight of 0.25kg ) rolls horizontally across the sand and decelerates at a rate of 6 m/s2. Calculate the force th
Vera_Pavlovna [14]
Um ok so you subtract 2 on both side the plug in 6
3 0
3 years ago
What mediums are best for light waves?
ycow [4]
The strength of the electric and magnetic fields there is no physical "distance" of oscillation here. nothing is actually moving up and down if you draw light as a sinusoidal wave, the up and down motion is the strength of the EM fields cheers
4 0
3 years ago
What’s the four missing blanks in this diagram?
sergey [27]

Answer:

                                                    Matter

                Pure substances                                        Mixture

Element                         compound         Homogenous           Heterogenous

7 0
3 years ago
How many hydrogen atoms are in a water molecule?
earnstyle [38]
The subscript after the element indicates the number of atoms of that element in the molecule. So, in H20, the subscript after the H, which stands for hydrogen, is 2. This means that there are 2 hydrogen atoms in a water molecule.

Hope this helps! :)
4 0
2 years ago
Electricity that comes into our homes from the grid is known as:
il63 [147K]
Power grid
All the poles and wires you see along the highway and in front of your house are called the electrical transmission and distribution system. Today, generating stations all across the country are connected to each other through the electrical system (sometimes called the "power grid").
7 0
2 years ago
Other questions:
  • An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 21
    15·1 answer
  • How does the amount of energy in light change as the wavelength increases
    11·1 answer
  • Waves on a swimming pool propagate at 0.720 m/s. You splash the water at one end of the pool and observe the wave go to the oppo
    13·1 answer
  • Power is calculated by multiplying voltage by
    6·1 answer
  • What is the general equation for a double-displacement reaction?
    6·1 answer
  • I'm confused! Please help me if you can!
    15·2 answers
  • How can a calculated height be greater than an actual height?
    11·1 answer
  • Does gravitational potential energy increase when getting closer to planet universal gravitation law.
    13·1 answer
  • 3. A block with a force of the Earth of -300. N is moved at constant velocity over a horizontal surface by a force of +50.0 N ap
    7·1 answer
  • A rocket weighing 300,000 N is taking off from Earth with a total thrust of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!