1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
4 years ago
6

Gravity and Electromagnetic force

Physics
2 answers:
nekit [7.7K]4 years ago
8 0

Answer:

1) Gravitational force and electromagnetic force both are field forces which means both forces exerted from long range of distance and we do not require any physical contact to apply these type of forces.

2) Now we also know that

F_g = \frac{Gm_1m_2}{r^2}

F_e = \frac{kq_1q_2}{r^2}

both the forces are inversely depends on the square of the distance between two charges or two masses

so both forces follow inverse square law.

Now two ways they are alike is

1) gravitational force never exist in form of repulsive force while electromagnetic force is either repulsive or attractive.

2) Gravitational force is independent of the medium between two masses while electromagnetic force is dependent on the medium between two charges

Sladkaya [172]4 years ago
6 0
Differences between gravitational and electromagnetic radiation

So far we have been emphasizing how, at a fundamental level, the generation and propagation of gravitational and electromagnetic radiation are basically quite similar. This is a major point in demystifying gravitational waves. But, on a more practical level, gravitational and electromagnetic waves are quite different: we see and use electromagnetic waves every day, while we have yet to make a confirmed direct detection of gravitational waves (which is why they seemed so mysterious in the first place).

There are two principal differences between gravity and electromagnetism, each with its own set of consequences for the nature and information content of its radiation, as described below.

<span><span><span>Gravity is a weak force, but has only one sign of charge.
Electromagnetism is much stronger, but comes in two opposing signs of charge.</span>
This is the most significant difference between gravity and electromagnetism, and is the main reason why we perceive these two phenomena so differently. It has several immediate consequences:<span>Significant gravitational fields are generated by accumulating bulk concentrations of matter. Electromagnetic fields are generated by slight imbalances caused by small (often microscopic) separations of charge.<span>Gravitational waves, similarly, are generated by the bulk motion of large masses, and will have wavelengths much longer than the objects themselves. Electromagnetic waves, meanwhile, are typically generated by small movements of charge pairs within objects, and have wavelengths much smaller than the objects themselves.</span><span>Gravitational waves are weakly interacting, making them extraordinarily difficult to detect; at the same time, they can travel unhindered through intervening matter of any density or composition. Electromagnetic waves are strongly interacting with normal matter, making them easy to detect; but they are readily absorbed or scattered by intervening matter. 

</span><span>Gravitational waves give holistic, sound-like information about the overall motions and vibrations of objects. Electromagnetic waves give images representing the aggregate properties of microscopic charges at the surfaces of objects.</span></span>
</span><span><span>Gravitational charge is equivalent to inertia.
Electromagnetic charge is unrelated to inertia. </span>
This is the more fundamental difference between electromagnetism and gravity, and influences many of the details of gravitational radiation, but in itself is not responsible for the dramatic differences in how we perceive these two types of radiation. Most of the consequences of the principle of equivalence in gravity have already be discussed, such as:<span><span>The fundamental field of gravity is a gravitational force gradient (or tidal) field, and requires an apparatus spread out over some distance in order to detect it. The fundamental field in electromagnetism is an electric force field, which can be felt by individual charges within an apparatus.</span><span>The dominant mode of gravitational radiation is quadrupolar: it has a quadratic dependence on the positions of the generating charges, and causes a relative "shearing" of the positions of receiving charges. The dominant mode of electromagnetic radiation is dipolar: it has a linear dependence on the positions of the generating charges, and creates a relative translation of the positions of receiving charges.</span></span></span></span>
You might be interested in
PLEASE HELP!!!!!!! MT TIME FOR MY TEST IS ALMOST OVER!!!
pav-90 [236]

Answer:

50 N

Explanation:

Let the natural length of the spring = L

so

100 = k(40 - L)       (1)

200 = k(60 - L)       (2)

(2)/(1):   2 = (60 - L)/(40 - L)

60 - L = 2(40 - L)

60 - L = 80 - 2L

2L - L = 80 - 60

L = 20

Sub it into (1):

100 = k(40 - 20) = 20k

k = 100/20 = 5 N/in

Now

X = k(30 - L) = 5(30 - 20) = 50 N

3 0
2 years ago
You add 800 ml of water at 20c to 800 ml of water at 80c what is the most likely final temperature of the mixture ?
bekas [8.4K]

Answer:

d. 50 C

Explanation:

In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.

According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.

The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:

Final temperature = (20 C + 80 C)/2

= 50 Celsius

3 0
3 years ago
Read 2 more answers
Which transformation of energy occurs when a fan is turned on and the blades start to rotate?
Ksju [112]

Answer:

kinetic energy

Explanation:

A wind turbine transforms the mechanical energy of wind into electrical energy. A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator

5 0
3 years ago
A doctor has a patient blow on one side of a U-shaped tube that is partially
mart [117]

Answer:

A. 150 Pa

Explanation:

Answer is 150 Pa

8 0
3 years ago
A carriage of 20 kg is pulled with a force of 35 N. How far the carriage will go
Gennadij [26K]

Answer:

2.71 m

Explanation:

Force is the product of mass and acceleration

F=m*a

Work done is the product of force and distance

Work done=F*d

In this case;

F= 35 N

Work done = 95 J

95 =35 * d

95 /35 = d

2.71 m= d

6 0
3 years ago
Other questions:
  • Which of the following best characterizes the free energy change ΔG for an endothermic reaction under physiological conditions?A
    8·1 answer
  • Classical conditioning requires _____.
    14·2 answers
  • Which phrase best completes the following analogy? Health is to wellness as exercise is to _____. anxiety fatigue physical fitne
    5·2 answers
  • A 214 g aluminum cup holds and is in thermal equilibrium with 892 g of water at 76°C. The combination of cup and water is cooled
    13·2 answers
  • An electron is moving directly toward you in a horizontal path when it suddenly enters a uniform magnetic field that is either v
    15·1 answer
  • Two bodies of mass m₁ &amp; m₂ are moving with the same velocity 'v' K.E. will be greater for??
    13·1 answer
  • Ist Law: a object continues in a state of
    15·1 answer
  • Question 22
    13·1 answer
  • An atom or ion has the abbreviated electron configuration [kr]. Select the species that it could not be
    15·1 answer
  • Which statement best describes what Kendall can measure?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!