Answer:
11.7 m/s
Explanation:
To find its speed, we first find the acceleration of the center of mass of a rolling object is given by
a = gsinθ/(1 + I/MR²) where θ = angle of slope = 4, I = moment of inertia of basketball = 2/3MR²
a = 9.8 m/s²sin4(1 + 2/3MR²/MR²)
= 9.8 m/s²sin4(1 + 2/3)
= 9.8 m/s²sin4 × (5/3)
= 1.14 m/s²
To find its speed v after rolling for 60 m, we use
v² = u² + 2as where u = initial speed = 0 (since it starts from rest), s = 60 m
v = √(u² + 2as) = √(0² + 2 × 1.14 m/s × 60 m) = √136.8 = 11.7 m/s
Longitudinal waves have energy that vibrates parallel to the medium - a compression is the region of greatest density and the rarefaction the region of highest density .The rarefaction (much like the maximum amplitude in a transverse wave) has a region of lowest density, typically situated in the exact center of the region.
Answer:
a) 2.933 m
b) 4.534 m
Explanation:
We're given the equation
v(t) = -0.4t² + 2t
If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.
See attachment for the calculations
The conclusion of the attachment will be
7.467 - 2.933 and that is 4.534 m
Thus, The distance it travels in the second 2 sec is 4.534 m
Answer:
It's probably the Redshift and Blueshift
Explanation:
The light shifting towards shorter or longer wavelengths as objects in space (stars or galaxies) move closer or farther away from us. This phenomenon is known as the Redshifts and Blueshifts. The concept indicates us that the Universe is expanding.
Hope this helps you!
Bye!
Answer:

Explanation:
We can use the equation for the speed

where x is the distance and t the time. In this case we know that the time spent was 2 hours and the distance was 150km. By replacing we have

I hope this useful for you
regards