Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
<span>Well, since it's in the shape of a wheel and the person walks around the edge of it, they must have a centripetal acceleration. Since a=v^2/r you can solve for "v" using 2.20 as your "a" and 59.5 as your "r" (r=half of the diameter).
</span> a=v^2/r
v=(a*r)^(1/2)=((2.20)*(59.5))^(1/2)=<span>
<span>11.44 m/s.
</span></span><span> After you get "v," plugged that into T=2 pi r/ v. This will give you the 1rev per sec.
</span> T=2 pi r/ v= T=(2)*(pi)*(59.5)/(11.44)= <span>
<span>32.68 rev/s
</span></span> Use dimensional analysis to get rev per min (1rev / # sec) times (60 sec/min).
(32.68 rev/s)(60 s/min)=<span>
<span>1960.74 rev/min
</span></span>
Answer:
Temperature of the gas molecules is 7.96 x 10⁴ K
Explanation:
Given :
Ions accelerated through voltage, V = 10.3 volts
The work done to change the position of singly charged gas ions is given by the relation :
W = q x V
Here q is charge of the ions and its value is 1.6 x 10⁻¹⁹ C.
Average kinetic energy of gas molecules is given by the relation:
K.E. = 
Here T is temperature and k is Boltzmann constant and its value is 1.38 x 10⁻²³ J/K.
According to the problem, the average kinetic energy of gas is equal to the work done to move the singly charged ions, i.e. ,
K.E. = W

Rearrange the above equation in terms of T :

Substitute the suitable values in the above equation.

T = 7.96 x 10⁴ K
Answer:
the velocity of the water flow is 7.92 m/s
Explanation:
The computation of the velocity of the water flow is as follows
Here we use the Bernouli equation
As we know that

= 7.92 m/s
Hence, the velocity of the water flow is 7.92 m/s
We simply applied the above formula so that the correct value could come
And, the same is to be considered