Answer:
the force will decrease to 3/4 of its original value.
Explanation:
The initial electric force between the two charges is:

where
k is the Coulomb's constant
q is the magnitude of each charge
r is their separation
Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

while the other charge will be

So, the new force will be

So, the force will decrease to 3/4 of its original value.
Answer:
0.25 L
Explanation:
= Initial pressure = 1 atm
= Initial Temperature = 20 °C
= Initial volume = 4.91 L
= Final pressure = 5.2 atm
= Final Temperature = -196 °C
= Final volume
From ideal gas law we have

The pressure experienced by the balloon is 0.25 L
Answer:
3.52176 x 10^-10 N
Explanation:
Fg = 3.52176 x 10^-10 Newton
Part (a):
1- Since the resistors are in series, therefore, the total resistance is the summation of the two resistors.
Therefore:
Rtotal = R1 + R2 = 3.11 + 6.15 = 9.26 ohm
2- Since the two resistors are in series, therefore, the current flowing in both is the same. We will use ohm's law to get the current as follows:
V = I*R
V is the voltage of the battery = 24 v
I is the current we want to get
R is the total resistance = 9.26 ohm
Therefore:
24 = 9.26*I
I = 24 / 9.26
I = 2.59 ampere
Part (b):
To get the voltage across the second resistor, we will again use Ohm's law as follows:
V = I*R
V is the voltage we want to get
I is the current in the second resistor = 2.59 ampere
R is the value of the second resistor = 6.15 ohm
Therefore:
V = I*R
V = 2.59 * 6.15
V = 15.9285 volts
Hope this helps :)