Answer:
-39.2m/s
Explanation:
Using the equation of motion;
v = u + at
Since the ball is thrown upward, the acceleration due to gravity acting on it will be negative, hence a = -g
v = u - gt
Since g = 9.8m/s²
t = 4.0s
u = 0m/s
v = 0 + (-9.8)(4)
v = 0 + (-9.8)(4)
v = -39.2m/s
Hence the speed of the ball before release is -39.2m/s
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 
Answer: C)The yellow car was faster. Yellow traveled at a speed of 50 mph while green was traveling at an average of 40 mph.
Explanation:
The speed of each car is defined as:

where d is the distance traveled by the car and t is the time taken.
For the yellow car, d=400 mi and t=8 h, so its speed is

For the green car, d=400 mi and t=10 h, so its speed is

So, the correct choice is
C)The yellow car was faster. Yellow traveled at a speed of 50 mph while green was traveling at an average of 40 mph.
Answer: 71.93 *10^3 N/C
Explanation: In order to calculate the electric field from long wire we have to use the Gaussian law, this is:
∫E*dr=Q inside/εo Q inside is given by: λ*L then,
E*2*π*r*L=λ*L/εo
E= λ/(2*π*εo*r)= 4* 10^-6/(2*3.1415*8.85*10^-12*2 )= 71.93 * 10^3 N/C
The average kinetic energy of a gas particle is directly proportional to the temperature. An increase in temperature increases the speed in which the gas molecules move. All gases at a given temperature have the same average kinetic energy. Lighter gas molecules move faster than heavier molecules.